skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Algorithmic Advances for the Adjacency Spectral Embedding
The Random Dot Product Graph (RDPG) is a popular generative graph model for relational data. RDPGs postulate there exist latent positions for each node, and specifies the edge formation probabilities via the inner product of the corresponding latent vectors. The embedding task of estimating these latent positions from observed graphs is usually posed as a non-convex matrix factorization problem. The workhorse Adjacency Spectral Embedding offers an approximate solution obtained via the eigendecomposition of the adjacency matrix, which enjoys solid statistical guarantees but can be computationally intensive and is formally solving a surrogate problem. In this paper, we bring to bear recent non-convex optimization advances and demonstrate their impact to RDPG inference. We develop first-order gradient descent methods to better solve the original optimization problem, and to accommodate broader network embedding applications in an organic way. The effectiveness of the resulting graph representation learning framework is demonstrated on both synthetic and real data. We show the algorithms are scalable, robust to missing network data, and can track the latent positions over time when the graphs are acquired in a streaming fashion.  more » « less
Award ID(s):
1750428 1809356
PAR ID:
10443083
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2022 30th European Signal Processing Conference (EUSIPCO)
Page Range / eLocation ID:
672 to 676
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary We propose and prove the optimality of a Bayesian approach for estimating the latent positions in random dot product graphs, which we call posterior spectral embedding. Unlike classical spectral-based adjacency, or Laplacian spectral embedding, posterior spectral embedding is a fully likelihood-based graph estimation method that takes advantage of the Bernoulli likelihood information of the observed adjacency matrix. We develop a minimax lower bound for estimating the latent positions, and show that posterior spectral embedding achieves this lower bound in the following two senses: it both results in a minimax-optimal posterior contraction rate and yields a point estimator achieving the minimax risk asymptotically. The convergence results are subsequently applied to clustering in stochastic block models with positive semidefinite block probability matrices, strengthening an existing result concerning the number of misclustered vertices. We also study a spectral-based Gaussian spectral embedding as a natural Bayesian analogue of adjacency spectral embedding, but the resulting posterior contraction rate is suboptimal by an extra logarithmic factor. The practical performance of the proposed methodology is illustrated through extensive synthetic examples and the analysis of Wikipedia graph data. 
    more » « less
  2. The popular Random Dot Product Graph (RDPG) generative model postulates that each node has an associated (latent) vector, and the probability of existence of an edge between two nodes is their inner-product (with variants to consider directed and weighted graphs). In any case, the latent vectors may be estimated through a spectral decomposition of the adjacency matrix, the so-called Adjacency Spectral Embedding (ASE). Assume we are monitoring a stream of graphs and the objective is to track the latent vectors. Examples include recommender systems or monitoring of a wireless network. It is clear that performing the ASE of each graph separately may result in a prohibitive computation load. Furthermore, the invariance to rotations of the inner product complicates comparing the latent vectors at different time-steps. By considering the minimization problem underlying ASE, we develop an iterative algorithm that updates the latent vectors' estimation as new graphs from the stream arrive. Differently to other proposals, our method does not accumulate errors and thus does not requires periodically re-computing the spectral decomposition. Furthermore, the pragmatic setting where nodes leave or join the graph (e.g. a new product in the recommender system) can be accommodated as well. Our code is available at https://github.com/marfiori/efficient-ASE 
    more » « less
  3. Bojanczyk, M. et (Ed.)
    Embedding graphs in a geographical or latent space, i.e. inferring locations for vertices in Euclidean space or on a smooth manifold or submanifold, is a common task in network analysis, statistical inference, and graph visualization. We consider the classic model of random geometric graphs where n points are scattered uniformly in a square of area n, and two points have an edge between them if and only if their Euclidean distance is less than r. The reconstruction problem then consists of inferring the vertex positions, up to the symmetries of the square, given only the adjacency matrix of the resulting graph. We give an algorithm that, if r = n^α for α > 0, with high probability reconstructs the vertex positions with a maximum error of O(n^β) where β = 1/2-(4/3)α, until α ≥ 3/8 where β = 0 and the error becomes O(√{log n}). This improves over earlier results, which were unable to reconstruct with error less than r. Our method estimates Euclidean distances using a hybrid of graph distances and short-range estimates based on the number of common neighbors. We extend our results to the surface of the sphere in ℝ³ and to hypercubes in any constant dimension. 
    more » « less
  4. Abstract We pursue the problem of modelling and analysing latent space dynamics in collections of networks. Towards this end, we pose and study latent space generative models for signed networks that are amenable to inference via spectral methods. Permitting signs, rather than restricting to unsigned networks, enables richer latent space structure and permissible dynamic mechanisms that can be provably inferred via low rank truncations of observed adjacency matrices. Our treatment of and ability to recover latent space dynamics holds across different levels of granularity, namely, at the overall graph level, for communities of nodes, and even at the individual node level. We provide synthetic and real data examples to illustrate the effectiveness of methodologies and to corroborate accompanying theory. The contributions set forth in this paper complement an emerging statistical paradigm for random graph inference encompassing random dot product graphs and generalizations thereof. 
    more » « less
  5. The graph distinguishability problem investigates whether a graph can be uniquely identified by the spectrum of its adjacency matrix, specifically determining if two graphs with the same spectrum are isomorphic. This issue is central to spectral graph theory and has significant implications for graph machine learning. In this paper, we explore the intricate connections between graph distinguishability and graph controllability–an essential concept in the control of networked systems. Focusing on oriented graphs and their skew-adjacency matrices, we establish controllability-based conditions that ensure their distinguishability. Notably, our conditions are less restrictive than existing methods, enabling a broader class of graphs to satisfy the distinguishability criteria. We illustrate the effectiveness of our results with several examples. Our findings highlight the applications of network control methods in tackling this crucial problem in algebraic graph theory, with implications for machine learning and network design. 
    more » « less