skip to main content


Title: Rapid Flood Progress Monitoring in Cropland with NASA SMAP
Research in different agricultural sectors, including in crop loss estimation during flood and yield estimation, substantially rely on inundation information. Spaceborne remote sensing has widely been used in the mapping and monitoring of floods. However, the inability of optical remote sensing to cloud penetration and the scarcity of fine temporal resolution SAR data hinder the application of flood mapping in many cases. Soil Moisture Active Passive (SMAP) level 4 products, which are model-driven soil moisture data derived from SMAP observations and are available at 3-h intervals, can offer an intermediate but effective solution. This study maps flood progress in croplands by incorporating SMAP surface soil moisture, soil physical properties, and national floodplain information. Soil moisture above the effective soil porosity is a direct indication of soil saturation. Soil moisture also increases considerably during a flood event. Therefore, this approach took into account three conditions to map the flooded pixels: a minimum of 0.05 m3m−3 increment in soil moisture from pre-flood to post-flood condition, soil moisture above the effective soil porosity, and the holding of saturation condition for the 72 consecutive hours. Results indicated that the SMAP-derived maps were able to successfully map most of the flooded areas in the reference maps in the majority of the cases, though with some degree of overestimation (due to the coarse spatial resolution of SMAP). Finally, the inundated croplands are extracted from saturated areas by Spatial Hazard Zone areas (SHFA) of Federal Emergency Management Agency (FEMA) and cropland data layer (CDL). The flood maps extracted from SMAP data are validated with FEMA-declared affected counties as well as with flood maps from other sources.  more » « less
Award ID(s):
1739705
PAR ID:
10109819
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Remote Sensing
Volume:
11
Issue:
2
ISSN:
2072-4292
Page Range / eLocation ID:
191
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Fires that emit massive amounts of CO2and particulate matter now burn with regularity in Southeast Asian tropical peatlands. Natural peatlands in Southeast Asia are waterlogged for most of the year and experience little or no fire, but networks of canals constructed for agriculture have drained vast areas of these peatlands, making the soil vulnerable to fire during periods of low rainfall. While soil moisture is the most direct measure of peat flammability, it has not been incorporated into fire studies due to an absence of regional observations. Here, we create the first remotely sensed soil moisture dataset for tropical peatlands in Sumatra, Borneo and Peninsular Malaysia by applying a new retrieval algorithm to satellite data from the Soil Moisture Active Passive (SMAP) mission with data spanning the 2015 El Niño burning event. Drier soil up to 30 days prior to fire correlates with larger burned area. The predictive information provided by soil moisture complements that of precipitation. Our remote sensing-derived results mirror those from a laboratory-based peat ignition study, suggesting that the dependence of fire on soil moisture exhibits scale independence within peatlands. Soil moisture measured from SMAP, a dataset spanning 2015-present, is a valuable resource for peat fire studies and warning systems.

     
    more » « less
  2. Abstract Root zone soil moisture (RZSM) is a dominant control on crop productivity, land-atmosphere feedbacks, and the hydrologic response of watersheds. Despite its importance, obtaining gap-free daily moisture data remains challenging. For example, remote sensing-based soil moisture products often have gaps arising from limits posed by the presence of clouds and satellite revisit period. Here, we retrieve a proxy of daily RZSM using the actual evapotranspiration (ETa) estimates from Surface Flux Equilibrium Theory (SFET). Our method is calibration-less, parsimonious, and only needs widely available meteorological data and standard land-surface parameters. Evaluation of the retrievals at Oklahoma Mesonet sites shows that our method, overall, matches or outperforms widely available RZSM estimates from three markedly different approaches, viz. remote sensing data based Atmosphere-Land EXchange Inversion (ALEXI) model, the Variable Infiltration Capacity (VIC) model, and the Soil Moisture Active Passive (SMAP) mission RZSM data product. When compared with in-situ observations, unbiased root mean square difference of retrieved RZSM were 0.03 (m 3 m −3 ), 0.06 (m 3 m −3 ), and 0.05 (m 3 m −3 ) for our method, the ALEXI model, and the VIC model, respectively. Better performance of our method is attributed to the use of both SFET for the estimation of ETa and non-parametric kernel-based method used to relate the RZSM with ETa. RZSM from our method may serve as a more accurate and temporally-complete alternative for a variety of applications including mapping of agricultural droughts, assimilation of RZSM for hydrometeorological forecasting, and design of optimal irrigation schedules. 
    more » « less
  3. The Soil Moisture Active Passive (SMAP) mission measures important soil moisture data globally. SMAP's products might not always perform better than land surface models (LSM) when evaluated against in situ measurements. However, we hypothesize that SMAP presents added value for long-term soil moisture estimation in a data fusion setting as evaluated by in situ data. Here, with the help of a time series deep learning (DL) method, we created a seamlessly extended SMAP data set to test this hypothesis and, importantly, gauge whether such benefits extend to years beyond SMAP's limited lifespan. We first show that the DL model, called long short-term memory (LSTM), can extrapolate SMAP for several years and the results are similar to the training period. We obtained prolongation results with low-performance degradation where SMAP itself matches well with in situ data. Interannual trends of root-zone soil moisture are surprisingly well captured by LSTM. In some cases, LSTM's performance is limited by SMAP, whose main issue appears to be its shallow sensing depth. Despite this limitation, a simple average between LSTM and an LSM Noah frequently outperforms Noah alone. Moreover, Noah combined with LSTM is more skillful than when it is combined with another LSM. Over sparsely instrumented sites, the Noah-LSTM combination shows a stronger edge. Our results verified the value of LSTM-extended SMAP data. Moreover, DL is completely data driven and does not require structural assumptions. As such, it has its unique potential for long-term projections and may be applied synergistically with other model-data integration techniques. 
    more » « less
  4. null (Ed.)
    Abstract. High-resolution remote sensing imagery has been increasingly used for flood applications. Different methods have been proposed for flood extent mapping from creating water index to image classification from high-resolution data. Among these methods, deep learning methods have shown promising results for flood extent extraction; however, these two-dimensional (2D) image classification methods cannot directly provide water level measurements. This paper presents an integrated approach to extract the flood extent in three-dimensional (3D) from UAV data by integrating 2D deep learning-based flood map and 3D cloud point extracted from a Structure from Motion (SFM) method. We fine-tuned a pretrained Visual Geometry Group 16 (VGG-16) based fully convolutional model to create a 2D inundation map. The 2D classified map was overlaid on the SfM-based 3D point cloud to create a 3D flood map. The floodwater depth was estimated by subtracting a pre-flood Digital Elevation Model (DEM) from the SfM-based DEM. The results show that the proposed method is efficient in creating a 3D flood extent map to support emergency response and recovery activates during a flood event. 
    more » « less
  5. Abstract

    Levees are built to safeguard human lives, essential infrastructure, and farmland. However, failure of levees can have catastrophic impacts due to a fast rate of inundation in areas protected by levees. Earthen levees are prone to failure due to excessive moisture content that reduces the shear strength of the soil. The use of levee monitoring systems has demonstrated the ability to reduce the likelihood of failure by creating maps that depict the saturation levels of the surface of the levee, both in terms of space and time. By utilizing extensive sensor networks to continuously monitor these geo-infrastructure systems, the structural deterioration attributed to changing climate can be studied. Measuring environmental parameters surrounding such structures provides insight into the potential stressors that cause structural failure. Steps can then be taken to mitigate those effects on the levees and maintain structural integrity. However, the massive scale of levees makes it difficult to monitor with conventional wired sensors. This paper presents a preliminary investigation into the development and validation of UAV-deployable smart sensing spikes for soil conductivity levels in levees, which is a measurement modality for determining soil saturation levels. For this work, Gaussian process regression (also known as kriging) is used to model the soil saturation levels between sensing spikes obtaining a continuous moisture map of the levees. The expanded data is then categorized using a clustering-based machine learning approach with conductivity data from sensing spikes as model inputs. The machine learning model output is sorted into three categories: dry, partially saturated, and saturated soil. The findings of a laboratory study are presented, and the implications of the raw and expanded data are discussed. This work will aid in predicting potential levee failure risks and maintenance requirements based on the analysis of the soil conditions using a network of smart sensing spikes.

     
    more » « less