skip to main content


Title: In-Season Major Crop-Type Identification for US Cropland from Landsat Images Using Crop-Rotation Pattern and Progressive Data Classification
Crop type information at the field level is vital for many types of research and applications. The United States Department of Agriculture (USDA) provides information on crop types for US cropland as a Cropland Data Layer (CDL). However, CDL is only available at the end of the year after the crop growing season. Therefore, CDL is unable to support in-season research and decision-making regarding crop loss estimation, yield estimation, and grain pricing. The USDA mostly relies on field survey and farmers’ reports for the ground truth to train image classification models, which is one of the major reasons for the delayed release of CDL. This research aims to use trusted pixels as ground truth to train classification models. Trusted pixels are pixels which follow a specific crop rotation pattern. These trusted pixels are used to train image classification models for the classification of in-season Landsat images to identify major crop types. Six different classification algorithms are investigated and tested to select the best algorithm for this study. The Random Forest algorithm stands out among selected algorithms. This study classified Landsat scenes between May and mid-August for Iowa. The overall agreements of classification results with CDL in 2017 are 84%, 94%, and 96% for May, June, and July, respectively. The classification accuracies have been assessed through 683 ground truth data points collected from the fields. The overall accuracies of single date multi-band image classification are 84%, 89% and 92% for May, June, and July, respectively. The result also shows higher accuracy (94–95%) can be achieved through multi-date image classification compared to single date image classification.  more » « less
Award ID(s):
1739705
PAR ID:
10109820
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Agriculture
Volume:
9
Issue:
1
ISSN:
2077-0472
Page Range / eLocation ID:
17
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It is still a challenge to generate the timely crop cover map at large geographic area due to the lack of reliable ground truths at early growing season. This paper introduces an efficient method to extract “trusted pixels” from the historical Cropland Data Layer (CDL) data using crop rotation patterns, which can be used to replace the actual ground truth in the crop mapping and other agricultural applications. A case study in the Nebraska state of USA is demonstrated. The common crop rotation patterns of four major crop types, corn, soybeans, winter wheat, and alfalfa, are compared and analyzed. The experiment results show a considerable number of pixels in CDL following the certain crop sequence during the past decade. Each observed crop type has at least one reliable crop rotation pattern. Based on the reliable crop rotation patterns, a great proportion of pixels can be correctly mapped a year ahead of the release of current-year CDL product. These trusted pixels can be potentially used to label training samples for crop type classification at early growing season. 
    more » « less
  2. Mapping and monitoring crops is a key step towards the sustainable intensification of agriculture and addressing global food security. A dataset like ImageNet that revolutionized computer vision applications can accelerate the development of novel crop mapping techniques. Currently, the United States Department of Agriculture (USDA) annually releases the Cropland Data Layer (CDL) which contains crop labels at 30m resolution for the entire United States of America. While CDL is state of the art and is widely used for a number of agricultural applications, it has a number of limitations (e.g., pixelated errors, labels carried over from previous years, and errors in the classification of minor crops). In this work, we create a new semantic segmentation benchmark dataset, which we call CalCROP21, for the diverse crops in the Central Valley region of California at 10m spatial resolution using a Google Earth Engine based robust image processing pipeline and a novel attention-based spatio-temporal semantic segmentation algorithm STATT. STATT uses re-sampled (interpolated) CDL labels for training but is able to generate a better prediction than CDL by leveraging spatial and temporal patterns in Sentinel2 multi-spectral image series to effectively capture phenologic differences amongst crops and uses attention to reduce the impact of clouds and other atmospheric disturbances. We also present a comprehensive evaluation to show that STATT has significantly better results when compared to the resampled CDL labels. We have released the dataset and the processing pipeline code for generating the benchmark dataset. 
    more » « less
  3. The Cropland Data Layer (CDL) is currently the only subfield level high resolution crop-specific land cover data product over the entire conterminous United States (CONUS). It has been widely used in agricultural industry, business decision support, research, and education worldwide. However, CDL data has its limitations. It is an end-of-season land cover map which is not available within growing season. Moreover, CDLs in early years have many misclassified pixels (relatively low accuracy) due to cloud cover and lack of satellite images. This paper will present the studies of using machine learning technique to address these issues in CDL data. Specifically, we will present the design and implementation of a machine learning model for agro-geoinformation discovery from CDL. Several application scenarios of the proposed model, including prediction of crop cover, crop acreage estimation, in-season crop mapping, and refinement of the earlyyear CDL data, are demonstrated and discussed. 
    more » « less
  4. GIS data layer on crop field boundary has many applications in agricultural research, ecosystem study, crop monitoring, and land management. Crop field boundary mapping through field survey is not time and cost effective for vast agriculture areas. Onscreen digitization on fine-resolution satellite image is also labor-intensive and error-prone. The recent development in image segmentation based on their spectral characteristics is promising for cropland boundary detection. However, processing of large volume multi-band satellite images often required high-performance computation systems. This study utilized crop rotation information for the delineation of field boundaries. In this study, crop field boundaries of Iowa in the United States are extracted using multi-year (2007-2018) CDL data. The process is simple compared to boundary extraction from multi-date remote sensing data. Although this process was unable to distinguish some adjacent fields, the overall accuracy is promising. Utilization of advanced geoprocessing algorithms and tools on polygon correction may improve the result significantly. Extracted field boundaries are validated by superimposing on fine resolution Google Earth images. The result shows that crop field boundaries can easily be extracted with reasonable accuracy using crop rotation information. 
    more » « less
  5. Abstract Efficient, more accurate reporting of maize ( Zea mays L.) phenology, crop condition, and progress is crucial for agronomists and policy makers. Integration of satellite imagery with machine learning models has shown great potential to improve crop classification and facilitate in-season phenological reports. However, crop phenology classification precision must be substantially improved to transform data into actionable management decisions for farmers and agronomists. An integrated approach utilizing ground truth field data for maize crop phenology (2013–2018 seasons), satellite imagery (Landsat 8), and weather data was explored with the following objectives: (i) model training and validation—identify the best combination of spectral bands, vegetation indices (VIs), weather parameters, geolocation, and ground truth data, resulting in a model with the highest accuracy across years at each season segment (step one) and (ii) model testing—post-selection model performance evaluation for each phenology class with unseen data (hold-out cross-validation) (step two). The best model performance for classifying maize phenology was documented when VIs (NDVI, EVI, GCVI, NDWI, GVMI) and vapor pressure deficit (VPD) were used as input variables. This study supports the integration of field ground truth, satellite imagery, and weather data to classify maize crop phenology, thereby facilitating foundational decision making and agricultural interventions for the different members of the agricultural chain. 
    more » « less