Crop type information at the field level is vital for many types of research and applications. The United States Department of Agriculture (USDA) provides information on crop types for US cropland as a Cropland Data Layer (CDL). However, CDL is only available at the end of the year after the crop growing season. Therefore, CDL is unable to support in-season research and decision-making regarding crop loss estimation, yield estimation, and grain pricing. The USDA mostly relies on field survey and farmers’ reports for the ground truth to train image classification models, which is one of the major reasons for the delayed release of CDL. This research aims to use trusted pixels as ground truth to train classification models. Trusted pixels are pixels which follow a specific crop rotation pattern. These trusted pixels are used to train image classification models for the classification of in-season Landsat images to identify major crop types. Six different classification algorithms are investigated and tested to select the best algorithm for this study. The Random Forest algorithm stands out among selected algorithms. This study classified Landsat scenes between May and mid-August for Iowa. The overall agreements of classification results with CDL in 2017 are 84%, 94%, and 96% for May, June, and July, respectively. The classification accuracies have been assessed through 683 ground truth data points collected from the fields. The overall accuracies of single date multi-band image classification are 84%, 89% and 92% for May, June, and July, respectively. The result also shows higher accuracy (94–95%) can be achieved through multi-date image classification compared to single date image classification.
more »
« less
Extracting Trusted Pixels from Historical Cropland Data Layer Using Crop Rotation Patterns: A Case Study in Nebraska, USA
It is still a challenge to generate the timely crop cover map at large geographic area due to the lack of reliable ground truths at early growing season. This paper introduces an efficient method to extract “trusted pixels” from the historical Cropland Data Layer (CDL) data using crop rotation patterns, which can be used to replace the actual ground truth in the crop mapping and other agricultural applications. A case study in the Nebraska state of USA is demonstrated. The common crop rotation patterns of four major crop types, corn, soybeans, winter wheat, and alfalfa, are compared and analyzed. The experiment results show a considerable number of pixels in CDL following the certain crop sequence during the past decade. Each observed crop type has at least one reliable crop rotation pattern. Based on the reliable crop rotation patterns, a great proportion of pixels can be correctly mapped a year ahead of the release of current-year CDL product. These trusted pixels can be potentially used to label training samples for crop type classification at early growing season.
more »
« less
- Award ID(s):
- 1739705
- PAR ID:
- 10193698
- Date Published:
- Journal Name:
- 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Cropland Data Layer (CDL) is currently the only subfield level high resolution crop-specific land cover data product over the entire conterminous United States (CONUS). It has been widely used in agricultural industry, business decision support, research, and education worldwide. However, CDL data has its limitations. It is an end-of-season land cover map which is not available within growing season. Moreover, CDLs in early years have many misclassified pixels (relatively low accuracy) due to cloud cover and lack of satellite images. This paper will present the studies of using machine learning technique to address these issues in CDL data. Specifically, we will present the design and implementation of a machine learning model for agro-geoinformation discovery from CDL. Several application scenarios of the proposed model, including prediction of crop cover, crop acreage estimation, in-season crop mapping, and refinement of the earlyyear CDL data, are demonstrated and discussed.more » « less
-
null (Ed.)Accurate phenological information is essential for monitoring crop development, predicting crop yield, and enhancing resilience to cope with climate change. This study employed a curve-change-based dynamic threshold approach on NDVI (Normalized Differential Vegetation Index) time series to detect the planting and harvesting dates for corn and soybean in Kentucky, a typical climatic transition zone, from 2000 to 2018. We compared satellite-based estimates with ground observations and performed trend analyses of crop phenological stages over the study period to analyze their relationships with climate change and crop yields. Our results showed that corn and soybean planting dates were delayed by 0.01 and 0.07 days/year, respectively. Corn harvesting dates were also delayed at a rate of 0.67 days/year, while advanced soybean harvesting occurred at a rate of 0.05 days/year. The growing season length has increased considerably at a rate of 0.66 days/year for corn and was shortened by 0.12 days/year for soybean. Sensitivity analysis showed that planting dates were more sensitive to the early season temperature, while harvesting dates were significantly correlated with temperature over the entire growing season. In terms of the changing climatic factors, only the increased summer precipitation was statistically related to the delayed corn harvesting dates in Kentucky. Further analysis showed that the increased corn yield was significantly correlated with the delayed harvesting dates (1.37 Bu/acre per day) and extended growing season length (1.67 Bu/acre per day). Our results suggested that seasonal climate change (e.g., summer precipitation) was the main factor influencing crop phenological trends, particularly corn harvesting in Kentucky over the study period. We also highlighted the critical role of changing crop phenology in constraining crop production, which needs further efforts for optimizing crop management practices.more » « less
-
Winter wheat is a main cereal crop grown in the United States of America (USA), and the USA is the third largest wheat exporter globally. Timely and reliable in-season forecast and year-end estimation of winter wheat grain production in the USA are needed for regional and global food security. In this study, we assessed the consistency between the agricultural statistical reports and satellite-based data for winter wheat over the contiguous US (CONUS) at both the county and national scales. First, we compared the planted area estimates from the National Agricultural Statistics Service (NASS) and the Cropland Data Layer (CDL) from 2008–2018. Second, we investigated the relationship between gross primary production (GPP) estimated by the vegetation photosynthesis model (VPM) and grain production from the NASS. Lastly, we explored the in-season utility of GPPVPM in monitoring seasonal production. Strong spatiotemporal consistency of planted areas was found between the NASS and CDL datasets. However, in the Southern Great Plains, both the CDL and NASS planted acreage were noticeable larger (>20%) than the NASS harvested area, where some winter wheat fields were used as forage for cattle grazing. County-level GPPVPM was linearly related with grain production of winter wheat, with an R2 value of 0.68 across the CONUS. The relationships between grain production and GPPVPM in those counties without a substantial difference (<20%) between planted and harvested area were much stronger and their harvest index (HIGPP) values ranged from 0.2–0.3. GPPVPM in May could explain about 70–90% of the variance of winter wheat grain production. Our findings highlight the potential of GPPVPM in winter wheat monitoring, especially for those high harvested/planted ratio, which could provide useful data to guide planning and marketing for decision makers, stakeholders, and the public.more » « less
-
Abstract. Agriculture plays a major role in eradicating poverty, promoting prosperity, and nourishing a projected 10 billion people by 2050 globally. In a changing climate, achieving optimal agricultural yields requires a deeper understanding of available natural resources and crops. This is especially important for places like the Navajo Nation, which faces significant challenges in food supply chain management due to various factors such as water demand, water quality, and insufficient information about land fertility and crops timings/seasons. Additionally, it is the largest Native American reservation in the U.S. It covers 27,425 square miles across Arizona, Utah, and New Mexico and has a population of 165,158 people, according to the 2020 census. Agriculture has been a key part of life in the Navajo Nation since the late 19th and early 20th centuries, playing a big role in the region’s development and stability. However, the lack of knowledge about decisions and actions during the crop growing season has resulted in lower crop productivity, as evidenced by the USDA statistical report for the Navajo Nation in 2012 and 2017. To support farmers by providing better decision-making and actionable insights, high-resolution, open-source Sentinel-2 satellite images are being used to develop advanced crop mapping techniques for identifying the spatial extent of various agricultural crops in the Navajo Nation. To address this, a collection of research papers was reviewed, leading to the development of a new methodology for analysing Sentinel-2 data from the 2017 and 2023 growing seasons within the Navajo Nation. The collected data was pre-processed by creating monthly median composites of surface reflectance to remove noise and enhance the results more accurately. After preprocessing, spectral indices were calculated from the spectral bands, including NDVI (Normalized Difference Vegetation Index), EVI (Enhanced Vegetation Index), GCVI (Green Chlorophyll Vegetation Index), and LSWI (Land Surface Water Index), to differentiate the crops more precisely. The training datasets were obtained from the USDA’s Crop Data Layer (CDL) and split into 80% for training and 20% for validating the Random Forest supervised classification algorithm. The classification resulted in an accuracy of 80%. Finally, the accuracy of the results was compared with independent ground truth data. This research identifies notable discrepancies between the CDL data and the Navajo Nation agricultural census statistical report, particularly in estimating corn acreage for the Chinle and Fort Defiance agencies. Ultimately this approach information is used to provide actionable insights to Navajo Nation farmers.more » « less
An official website of the United States government

