skip to main content


Title: Performance of Caching-Based D2D Video Distribution with Measured Popularity Distributions
On-demand video accounts for the majority of wireless data traffic. Video distribution schemes based on caching combined with device-to-device (D2D) communications promise order-of-magnitude greater spectral efficiency for video delivery, but hinge on the principle of “concentrated demand distributions." This paper presents, for the first time, the analysis and evaluations of the throughput–outage tradeoff of such schemes based on measured cellular demand distributions. In particular, we use a dataset with more than 100 million requests from the BBC iPlayer, a popular video streaming service in the U.K., as the foundation of the analysis and evaluations. We present an achievable scaling law based on the practical popularity distribution, and show that such scaling law is identical to those reported in the literature. We find that also for the numerical evaluations based on a realistic setup, order-of-magnitude improvements can be achieved. Our results indicate that the benefits promised by the caching-based D2D in the literature could be retained for cellular networks in practice.  more » « less
Award ID(s):
1816699 1423140
NSF-PAR ID:
10110058
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE Globecom
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. On-demand video accounts for the majority of wireless data traffic. Video distribution schemes based on caching combined with device-to-device (D2D) communications promise order-of-magnitude greater spectral efficiency for video delivery, but hinge on the principle of concentrated demand distributions. This paper presents, for the first time, the analysis and evaluations of the throughput-outage tradeoff of such schemes based on measured cellular demand distributions. In particular, we use a dataset with more than 100 million requests from the BBC iPlayer, a popular video streaming service in the U.K., as the foundation of the analysis and evaluations. We present an achievable scaling law based on the practical popularity distribution, and show that such scaling law is identical to those reported in the literature. We find that also for the numerical evaluations based on a realistic setup, order-of-magnitude improvements can be achieved. Our results indicate that the benefits promised by the caching-based D2D in the literature could be retained for cellular networks in practice. 
    more » « less
  2. Caching of video files on user devices, combined with file exchange through device-to-device (D2D) communications is a promising method for increasing the throughput of wireless networks. Previous theoretical investigations showed that throughput can be increased by orders of magnitude, but assumed a Zipf distribution for modeling the popularity distribution, which was based on observations in wired networks. Thus the question whether cache-aided D2D video distribution can provide in practice the benefits promised by existing theoretical literature remains open. To answer this question, we provide new results specifically for popularity distributions of video requests of mobile users. Based on an extensive real-world dataset, we adopt a generalized distribution, known as Mandelbrot-Zipf (MZipf) distribution. We first show that this popularity distribution can fit the practical data well. Using this distribution, we analyze the throughput–outage tradeoff of the cache-aided D2D network and show that the scaling law is identical to the case of Zipf popularity distribution when the MZipf distribution is sufficiently skewed, implying that the benefits previously promised in the literature could indeed be realized in practice. To support the theory, practical evaluations using numerical experiments are provided, and show that the cache-aided D2D can outperform the conventional unicasting from base stations. 
    more » « less
  3. In this paper, we propose a new design framework on Device-to-Device (D2D) coded caching networks with optimal communication load (rate) but significantly less file subpacketizations compared to that of the well-known D2D coded caching scheme proposed by Ji, Caire and Molisch (JCM). The proposed design framework is referred to as the Packet Type-based (PTB) design, where each file is partitioned into packets according to their pre-defined types while the cache placement and user multicast grouping are based on the packet types. This leads to the so-called raw packet saving gain for the subpacketization levels. By a careful selection of transmitters within each multicasting group, a so-called further splitting ratio gain of the subpacketizatios can also be achieved. By the joint effect of the raw packet saving gain and the further splitting ratio gain, an order-wise subpacketization reduction can be achieved compared to the JCM scheme while preserving the optimal rate. In addition, as the first time presented in the literature according to our knowledge, we find that unequal subpacketizaton is a key to achieve subpacketization reductions when the number of users is odd. As a by-product, instead of directly translating shared link caching schemes to D2D caching schemes, at least for the sake of subpackeitzation, a new design framework is indeed needed. 
    more » « less
  4. We present a novel Packet Type (PT)-based design framework for the finite-length analysis of Device-to-Device (D2D) coded caching. By the exploitation of the asymmetry in the coded delivery phase, two fundamental forms of subpacketization reduction gain for D2D coded caching, i.e., the subfile saving gain and the further splitting saving gain, are identified in the PT framework. The proposed framework features a streamlined design process which uses several key concepts including user grouping, subfile and packet types, multicast group types, transmitter selection, local/global further splitting factor, and PT design as an integer optimization. In particular, based on a predefined user grouping, the subfile and multicast group types can be determined and the cache placement of the users can be correspondingly determined. In this stage, subfiles of certain types can be potentially excluded without being used in the designed caching scheme, which we refer to as subfile saving gain. In the delivery phase, by a careful selection of the transmitters within each type of multicast groups, a smaller number of packets that each subfile needs to be further split into can be achieved, leading to the further splitting saving gain. The joint effect of these two gains results in an overall subpacketization reduction compared to the Ji-Caire-Molisch (JCM) scheme [1]. Using the PT framework, a new class of D2D caching schemes is constructed with order reduction on subpacketization but the same rate when compared to the JCM scheme. 
    more » « less
  5. Abstract—Due to the concentrated popularity distribution of video files, caching of popular files on devices, and distributing them via device-to-device (D2D) communications allows a dramatic increase in the throughput of wireless video networks. However, since the popularity distribution is not static and the caching policy might be outdated, there is a need for replacement of cache content. In this work, by exploiting the broadcasting of the base station (BS), we model the caching content replacement in BS assisted wireless D2D caching networks and propose a practically realizable replacement procedure. Subsequently, by introducing a queuing system, the replacement problem is formulated as a sequential decision making problem, in which the long term average service rate is optimized under average cost constraint and queue stability. We propose a replacement design using Lyapunov optimization, which effectively solves the problem and makes decisions. Using simulations, we evaluate the proposed design. The results clearly indicate that, when dynamics exist, the systems exploiting replacement can significantly outperform the systems using merely the static policy. 
    more » « less