skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1816699

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The worlds of computing, communication, and storage have for a long time been treated separately, and even the recent trends of cloud computing, distributed computing, and mobile edge computing have not funda-mentally changed the role of networks, still designed to move data between end users and pre-determined compu-tation nodes, without true optimization of the end-to-end compute-communication process. However, the emergence of Metaverse applications, where users consume multime-dia experiences that result from the real-time combination of distributed live sources and stored digital assets, has changed the requirements for, and possibilities of, systems that provide distributed caching, computation, and com-munication. We argue that the real-time interactive nature and high demands on data storage, streaming rates, and processing power of Metaverse applications will accelerate the merging of the cloud into the network, leading to highly-distributed tightly-integrated compute- and data-intensive networks becoming universal compute platforms for next-generation digital experiences. In this paper, we first describe the requirements of Metaverse applications and associated supporting infrastructure, including rele-vant use cases. We then outline a comprehensive cloud network flow mathematical framework, designed for the end-to-end optimization and control of such systems, and show numerical results illustrating its promising role for the efficient operation of Metaverse-ready networks. 
    more » « less
  2. Emerging distributed cloud architectures, e.g., fog and mobile edge computing, are playing an increasingly impor-tant role in the efficient delivery of real-time stream-processing applications (also referred to as augmented information services), such as industrial automation and metaverse experiences (e.g., extended reality, immersive gaming). While such applications require processed streams to be shared and simultaneously consumed by multiple users/devices, existing technologies lack efficient mechanisms to deal with their inherent multicast na-ture, leading to unnecessary traffic redundancy and network congestion. In this paper, we establish a unified framework for distributed cloud network control with generalized (mixed-cast) traffic flows that allows optimizing the distributed execution of the required packet processing, forwarding, and replication operations. We first characterize the enlarged multicast network stability region under the new control framework (with respect to its unicast counterpart). We then design a novel queuing system that allows scheduling data packets according to their current destination sets, and leverage Lyapunov drift-plus-penalty con-trol theory to develop the first fully decentralized, throughput-and cost-optimal algorithm for multicast flow control. Numerical experiments validate analytical results and demonstrate the performance gain of the proposed design over existing network control policies. 
    more » « less
  3. Performance assessment and optimization for net-works jointly performing caching, computing, and communica-tion (3C) has recently drawn significant attention because many emerging applications require 3C functionality. However, studies in the literature mostly focus on the particular algorithms and setups of such networks, while the theoretical understanding and characterization of such networks has been less explored. To fill this gap, this paper conducts the asymptotic (scaling-law) analysis for the delay-outage tradeoff of noise-limited wireless edge networks with joint 3C. In particular, we derive closed-form expressions for the optimum outage probability as function of delay and other network parameters via first obtaining the outage probability expression and then deriving the optimal caching policy. We provide insights and interpretations based on the derived expressions. Computer simulations validate our analytical results and insights. 
    more » « less
  4. Next-generation distributed computing networks (e.g., edge and fog computing) enable the efficient delivery of delay-sensitive, compute-intensive applications by facilitating access to computation resources in close proximity to end users. Many of these applications (e.g., augmented/virtual reality) are also data-intensive: in addition to user-specific (live) data streams, they require access to shared (static) digital objects (e.g., im-age database) to complete the required processing tasks. When required objects are not available at the servers hosting the associated service functions, they must be fetched from other edge locations, incurring additional communication cost and latency. In such settings, overall service delivery performance shall benefit from jointly optimized decisions around (i) routing paths and processing locations for live data streams, together with (ii) cache selection and distribution paths for associated digital objects. In this paper, we address the problem of dynamic control of data-intensive services over edge cloud networks. We characterize the network stability region and design the first throughput-optimal control policy that coordinates processing and routing decisions for both live and static data-streams. Numerical results demonstrate the superior performance (e.g., throughput, delay, and resource consumption) obtained via the novel multi-pipeline flow control mechanism of the proposed policy, compared with state-of-the-art algorithms that lack integrated stream processing and data distribution control. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)