- Award ID(s):
- 1731694
- NSF-PAR ID:
- 10110061
- Date Published:
- Journal Name:
- IEEE Vehicular Technology Conference Workshops
- ISSN:
- 1042-4369
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Channel estimation for the downlink of frequency division duplex (FDD) massive MIMO systems is well known to generate a large overhead as the amount of training generally scales with the number of transmit antennas in a MIMO system. In this paper, we consider the solution of extrapolating the channel frequency response from uplink pilot estimates to the downlink frequency band, which completely removes the training overhead. We first show that conventional estimators fail to achieve reasonable accuracy. We propose instead to use high-resolution channel estimation. We derive theoretical lower bounds (LB) for the mean squared error (MSE) of the extrapolated channel. Assuming that the paths are well separated, the LB is simplified in an expression that gives considerable physical insight. It is then shown that the MSE is inversely proportional to the number of receive antennas while the extrapolation performance penalty scales with the square of the ratio of the frequency offset and the training bandwidth. The channel extrapolation performance is validated through numeric simulations and experimental measurements taken in an anechoic chamber. Our main conclusion is that channel extrapolation is a viable solution for FDD massive MIMO systems if accurate system calibration is performed and favorable propagation conditions are present.more » « less
-
Beam alignment is a critical aspect in millimeter wave (mm-wave) cellular systems. However, the inherent limitations of channel estimation result in beam alignment errors, which degrade the system performance. For systems with a large number of antennas at the base station, downlink channel estimation is performed using uplink pilot signals. The beam alignment errors, thus, depend on the user equipment (UE) transmit power, which needs to be managed properly as the UEs are battery powered. This paper investigates how the use of uplink power control for the transmission of pilot signals in a mm-wave network affects the downlink beam alignment errors, which depend on various link parameters. We use stochastic geometry and statistics of the Student's t -distribution to develop an analytical model, which captures the interplay between the uplink power control and downlink signal-to-noise ratio (SNR) coverage probability. Our results indicate that using uplink power control significantly reduces UE power consumption without adversely affecting the downlink SNR coverage.more » « less
-
Downlink channel estimation in massive MIMO systems is well known to generate a large overhead in frequency division duplex (FDD) mode as the amount of training generally scales with the number of transmit antennas. Using instead an extrapolation of the channel from the measured uplink estimates to the downlink frequency band completely removes this overhead. In this paper, we investigate the theoretical limits of channel extrapolation in frequency. We highlight the advantage of basing the extrapolation on high-resolution channel estimation. A lower bound (LB) on the mean squared error (MSE) of the extrapolated channel is derived. A simplified LB is also proposed, giving physical intuition on the SNR gain and extrapolation range that can be expected in practice. The validity of the simplified LB relies on the assumption that the paths are well separated. The SNR gain then linearly improves with the number of receive antennas while the extrapolation performance penalty quadratically scales with the ratio of the frequency and the training bandwidth. The theoretical LB is numerically evaluated using a 3GPP channel model and we show that the LB can be reached by practical high-resolution parameter extraction algorithms. Our results show that there are strong limitations on the extrapolation range than can be expected in SISO systems while much more promising results can be obtained in the multiple-antenna setting as the paths can be more easily separated in the delay-angle domain.more » « less
-
In this paper, a practical precoding method for the downlink of filter bank multicarrier-based (FBMC-based) massive multiple-input multiple-output (MIMO) is developed. The proposed method includes a two-stage precoder consisting of a fractionally spaced prefilter (FSP) per subcarrier for flattening/equalizing the channel across the subcarrier band, followed by a conventional precoder whose goal is to concentrate the signals of different users at their spatial locations. This way, each user receives only the intended information. In this paper, we take note that channel reciprocity may not hold perfectly in practical scenarios due to the mismatch of radio chains in uplink and downlink. Additionally, channel state information (CSI) at the base station may not be perfectly known. This, together with imperfect channel reciprocity can lead to detrimental effects on the downlink precoder performance. We theoretically analyze the performance of the proposed precoder in the presence of imperfect CSI and channel reciprocity calibration errors. This leads to an effective method for compensating these effects. Finally, we numerically evaluate the performance of the proposed precoder. Our results show that the proposed precoder leads to an excellent performance when benchmarked against OFDM.more » « less
-
This article presents what we believe to be a novel chip-scale 25-45-GHz re-configurable mm-wave remote antenna unit (RAU) for radio over fiber (RoF) distributed antenna systems. The proposed RAU architecture optimizes energy efficiency by operating directly at mm-wave frequencies, and spectral efficiency by selecting re-configurable RF photonic filters topology. Additionally, it achieves frequency agility by rejecting interferes and a small form factor by utilizing the SOI photonics process. Two photonic integrated circuits (PICs) that act as downlink and uplink units are presented while occupying a total area of 12.33 mm2. The downlink selects a single channel within the desired frequency range, while the uplink rejects up to four interferes. The building blocks of the proposed architecture are discussed and their design consideration and parameters are shown. Then, a comprehensive system analysis of the proposed RAU architecture including key performance indicators is presented. A scalable 5-channel system is demonstrated each with a 3-dB Bandwidth of 5-GHz. Moreover, this architecture can be continuously tuned and re-configured within a wide frequency range to cover all 5-channels. To the best of the authors’ knowledge, this is the first wideband modular and re-configurable mm-wave RAU that covers the entire mm-wave sub-45-GHz band implemented in silicon photonics.