skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Morphological Cell Types Projecting from V1 Layer 4B to V2 Thick and Thin Stripes
In macaque visual cortex, different cytochrome oxidase stripes of area V2 receive segregated projections from layers (L)2/3 and 4B of the primary visual cortex (V1), and project to dorsal or ventral stream extrastriate areas. Parallel V1-to-V2 pathways suggest functionally specialized circuits, but it is unknown whether these circuits arise from distinct cell types. V1 L4B includes two morphological types of excitatory projection neurons: pyramids, which carry mixed magnocellular (M) and parvocellular (P) information to downstream areas, and spiny stellates, which carry onlyMinformation. Previous studies have shown that, overall, V2 receives80% of its L4B inputs from pyramids, thus receiving mixed M and P signals. However, it is unknown how pyramids and stellates distribute their outputs to the different V2 stripes, and whether different stripes receive inputs from morphologically distinct neuron types. Using viral-mediated labeling of V2-projecting L4B neurons in male macaques, we show that thick stripes receive a greater contribution of L4B inputs from M-dominated spiny stellates compared with thin stripes. Both stripe types, however, receive a much larger contribution from spiny stellates than previously shown for V2 overall, indicating that a larger amount ofMinformation than previously thought flows into both the dorsal and ventral streams via the V2 thick and thin stripes, respectively. Moreover, we identify four types of V2-projecting L4B cells differing in size and complexity. Three such cell types project to both thin and thick stripes, but one type, the giant spiny-stellate neuron, resembling L4B neurons projecting to motion-sensitive area MT, was only found to project to thick stripes.  more » « less
Award ID(s):
1755431
PAR ID:
10110111
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Journal of Neuroscience
Volume:
39
ISSN:
0270-6474
Page Range / eLocation ID:
1096-19
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The mammalian sensory neocortex consists of hierarchically organized areas reciprocally connected via feedforward (FF) and feedback (FB) circuits. Several theories of hierarchical computation ascribe the bulk of the computational work of the cortex to looped FF-FB circuits between pairs of cortical areas. However, whether such corticocortical loops exist remains unclear. In higher mammals, individual FF-projection neurons send afferents almost exclusively to a single higher-level area. However, it is unclear whether FB-projection neurons show similar area-specificity, and whether they influence FF-projection neurons directly or indirectly. Using viral-mediated monosynaptic circuit tracing in macaque primary visual cortex (V1), we show that V1 neurons sending FF projections to area V2 receive monosynaptic FB inputs from V2, but not other V1-projecting areas. We also find monosynaptic FB-to-FB neuron contacts as a second motif of FB connectivity. Our results support the existence of FF-FB loops in primate cortex, and suggest that FB can rapidly and selectively influence the activity of incoming FF signals. 
    more » « less
  2. Abstract In the primate visual system, visual object recognition involves a series of cortical areas arranged hierarchically along the ventral visual pathway. As information flows through this hierarchy, neurons become progressively tuned to more complex image features. The circuit mechanisms and computations underlying the increasing complexity of these receptive fields (RFs) remain unidentified. To understand how this complexity emerges in the secondary visual area (V2), we investigated the functional organization of inputs from the primary visual cortex (V1) to V2 by combining retrograde anatomical tracing of these inputs with functional imaging of feature maps in macaque monkey V1 and V2. We found that V1 neurons sending inputs to single V2 orientation columns have a broad range of preferred orientations, but are strongly biased towards the orientation represented at the injected V2 site. For each V2 site, we then constructed a feedforward model based on the linear combination of its anatomically- identified large-scale V1 inputs, and studied the response proprieties of the generated V2 RFs. We found that V2 RFs derived from the linear feedforward model were either elongated versions of V1 filters or had spatially complex structures. These modeled RFs predicted V2 neuron responses to oriented grating stimuli with high accuracy. Remarkably, this simple model also explained the greater selectivity to naturalistic textures of V2 cells compared to their V1 input cells. Our results demonstrate that simple linear combinations of feedforward inputs can account for the orientation selectivity and texture sensitivity of V2 RFs. 
    more » « less
  3. Abstract The sensory neocortex consists of hierarchically-organized areas reciprocally connected via feedforward and feedback circuits. Feedforward connections shape the receptive field properties of neurons in higher areas within parallel streams specialized in processing specific stimulus attributes. Feedback connections have been implicated in top-down modulations, such as attention, prediction and sensory context. However, their computational role remains unknown, partly because we lack knowledge about rules of feedback connectivity to constrain models of feedback function. For example, it is unknown whether feedback connections maintain stream-specific segregation, or integrate information across parallel streams. Using viral-mediated labeling of feedback connections arising from specific cytochrome-oxidase stripes of macaque visual area V2, here we show that feedback to the primary visual cortex (V1) is organized into parallel streams resembling the reciprocal feedforward pathways. This suggests that functionally-specialized V2 feedback channels modulate V1 responses to specific stimulus attributes, an organizational principle potentially extending to feedback pathways in other sensory systems. 
    more » « less
  4. What are the fundamental principles that inform representation in the primate visual brain? While objects have become an intuitive framework for studying neurons in many parts of cortex, it is possible that neurons follow a more expressive organizational principle, such as encoding generic features present across textures, places, and objects. In this study, we used multielectrode arrays to record from neurons in the early (V1/V2), middle (V4), and later [posterior inferotemporal (PIT) cortex] areas across the visual hierarchy, estimating each neuron’s local operation across natural scene via “heatmaps.” We found that, while populations of neurons with foveal receptive fields across V1/V2, V4, and PIT responded over the full scene, they focused on salient subregions within object outlines. Notably, neurons preferentially encoded animal features rather than general objects, with this trend strengthening along the visual hierarchy. These results show that the monkey ventral stream is partially organized to encode local animal features over objects, even as early as primary visual cortex. 
    more » « less
  5. Visual perception in natural environments depends on the ability to focus on salient stimuli while ignoring distractions. This kind of selective visual attention is associated with gamma activity in the visual cortex. While the nucleus reticularis thalami (nRT) has been implicated in selective attention, its role in modulating gamma activity in the visual cortex remains unknown. Here, we show that somatostatin- (SST) but not parvalbumin-expressing (PV) neurons in the visual sector of the nRT preferentially project to the dorsal lateral geniculate nucleus (dLGN), and modulate visual information transmission and gamma activity in primary visual cortex (V1). These findings pinpoint the SST neurons in nRT as powerful modulators of the visual information encoding accuracy in V1 and represent a novel circuit through which the nRT can influence representation of visual information. 
    more » « less