In macaque visual cortex, different cytochrome oxidase stripes of area V2 receive segregated projections from layers (L)2/3 and 4B of the primary visual cortex (V1), and project to dorsal or ventral stream extrastriate areas. Parallel V1-to-V2 pathways suggest functionally specialized circuits, but it is unknown whether these circuits arise from distinct cell types. V1 L4B includes two morphological types of excitatory projection neurons: pyramids, which carry mixed magnocellular (M) and parvocellular (P) information to downstream areas, and spiny stellates, which carry onlyMinformation. Previous studies have shown that, overall, V2 receives80% of its L4B inputs from pyramids, thus receiving mixed M and P signals. However, it is unknown how pyramids and stellates distribute their outputs to the different V2 stripes, and whether different stripes receive inputs from morphologically distinct neuron types. Using viral-mediated labeling of V2-projecting L4B neurons in male macaques, we show that thick stripes receive a greater contribution of L4B inputs from M-dominated spiny stellates compared with thin stripes. Both stripe types, however, receive a much larger contribution from spiny stellates than previously shown for V2 overall, indicating that a larger amount ofMinformation than previously thought flows into both the dorsal and ventral streams via the V2 thick and thin stripes, respectively. Moreover, we identify four types of V2-projecting L4B cells differing in size and complexity. Three such cell types project to both thin and thick stripes, but one type, the giant spiny-stellate neuron, resembling L4B neurons projecting to motion-sensitive area MT, was only found to project to thick stripes.
more »
« less
Primate V2 Receptive Fields Derived from Anatomically Identified Large-Scale V1 Inputs
Abstract In the primate visual system, visual object recognition involves a series of cortical areas arranged hierarchically along the ventral visual pathway. As information flows through this hierarchy, neurons become progressively tuned to more complex image features. The circuit mechanisms and computations underlying the increasing complexity of these receptive fields (RFs) remain unidentified. To understand how this complexity emerges in the secondary visual area (V2), we investigated the functional organization of inputs from the primary visual cortex (V1) to V2 by combining retrograde anatomical tracing of these inputs with functional imaging of feature maps in macaque monkey V1 and V2. We found that V1 neurons sending inputs to single V2 orientation columns have a broad range of preferred orientations, but are strongly biased towards the orientation represented at the injected V2 site. For each V2 site, we then constructed a feedforward model based on the linear combination of its anatomically- identified large-scale V1 inputs, and studied the response proprieties of the generated V2 RFs. We found that V2 RFs derived from the linear feedforward model were either elongated versions of V1 filters or had spatially complex structures. These modeled RFs predicted V2 neuron responses to oriented grating stimuli with high accuracy. Remarkably, this simple model also explained the greater selectivity to naturalistic textures of V2 cells compared to their V1 input cells. Our results demonstrate that simple linear combinations of feedforward inputs can account for the orientation selectivity and texture sensitivity of V2 RFs.
more »
« less
- Award ID(s):
- 1755431
- PAR ID:
- 10571307
- Publisher / Repository:
- Research Square
- Date Published:
- Format(s):
- Medium: X
- Institution:
- University of Utah
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The cerebral cortex of primates encompasses multiple anatomically and physiologically distinct areas processing visual information. Areas V1, V2, and V5/MT are conserved across mammals and are central for visual behavior. To facilitate the generation of biologically accurate computational models of primate early visual processing, here we provide an overview of over 350 published studies of these three areas in the genus Macaca, whose visual system provides the closest model for human vision. The literature reports 14 anatomical connection types from the lateral geniculate nucleus of the thalamus to V1 having distinct layers of origin or termination, and 194 connection types between V1, V2, and V5, forming multiple parallel and interacting visual processing streams. Moreover, within V1, there are reports of 286 and 120 types of intrinsic excitatory and inhibitory connections, respectively. Physiologically, tuning of neuronal responses to 11 types of visual stimulus parameters has been consistently reported. Overall, the optimal spatial frequency (SF) of constituent neurons decreases with cortical hierarchy. Moreover, V5 neurons are distinct from neurons in other areas for their higher direction selectivity, higher contrast sensitivity, higher temporal frequency tuning, and wider SF bandwidth. We also discuss currently unavailable data that could be useful for biologically accurate models.more » « less
-
null (Ed.)Abstract The mammalian sensory neocortex consists of hierarchically organized areas reciprocally connected via feedforward (FF) and feedback (FB) circuits. Several theories of hierarchical computation ascribe the bulk of the computational work of the cortex to looped FF-FB circuits between pairs of cortical areas. However, whether such corticocortical loops exist remains unclear. In higher mammals, individual FF-projection neurons send afferents almost exclusively to a single higher-level area. However, it is unclear whether FB-projection neurons show similar area-specificity, and whether they influence FF-projection neurons directly or indirectly. Using viral-mediated monosynaptic circuit tracing in macaque primary visual cortex (V1), we show that V1 neurons sending FF projections to area V2 receive monosynaptic FB inputs from V2, but not other V1-projecting areas. We also find monosynaptic FB-to-FB neuron contacts as a second motif of FB connectivity. Our results support the existence of FF-FB loops in primate cortex, and suggest that FB can rapidly and selectively influence the activity of incoming FF signals.more » « less
-
Abstract The sensory neocortex consists of hierarchically-organized areas reciprocally connected via feedforward and feedback circuits. Feedforward connections shape the receptive field properties of neurons in higher areas within parallel streams specialized in processing specific stimulus attributes. Feedback connections have been implicated in top-down modulations, such as attention, prediction and sensory context. However, their computational role remains unknown, partly because we lack knowledge about rules of feedback connectivity to constrain models of feedback function. For example, it is unknown whether feedback connections maintain stream-specific segregation, or integrate information across parallel streams. Using viral-mediated labeling of feedback connections arising from specific cytochrome-oxidase stripes of macaque visual area V2, here we show that feedback to the primary visual cortex (V1) is organized into parallel streams resembling the reciprocal feedforward pathways. This suggests that functionally-specialized V2 feedback channels modulate V1 responses to specific stimulus attributes, an organizational principle potentially extending to feedback pathways in other sensory systems.more » « less
-
Theunissen, Frédéric E. (Ed.)System identification techniques—projection pursuit regression models (PPRs) and convolutional neural networks (CNNs)—provide state-of-the-art performance in predicting visual cortical neurons’ responses to arbitrary input stimuli. However, the constituent kernels recovered by these methods are often noisy and lack coherent structure, making it difficult to understand the underlying component features of a neuron’s receptive field. In this paper, we show that using a dictionary of diverse kernels with complex shapes learned from natural scenes based on efficient coding theory, as the front-end for PPRs and CNNs can improve their performance in neuronal response prediction as well as algorithmic data efficiency and convergence speed. Extensive experimental results also indicate that these sparse-code kernels provide important information on the component features of a neuron’s receptive field. In addition, we find that models with the complex-shaped sparse code front-end are significantly better than models with a standard orientation-selective Gabor filter front-end for modeling V1 neurons that have been found to exhibit complex pattern selectivity. We show that the relative performance difference due to these two front-ends can be used to produce a sensitive metric for detecting complex selectivity in V1 neurons.more » « less