Understanding the Effect of Doping on Energetics and Electronic Structure for Au 25 , Ag 25 , and Au 38 Clusters
- Award ID(s):
- 1726332
- PAR ID:
- 10110151
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry C
- Volume:
- 123
- Issue:
- 14
- ISSN:
- 1932-7447
- Page Range / eLocation ID:
- 9516 to 9527
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Energetically low-lying structural isomers of the much-studied thiolate-protected gold cluster Au 25 (SR) 18 − are discovered from extensive (80 ns) molecular dynamics (MD) simulations using the reactive molecular force field ReaxFF and confirmed by density functional theory (DFT). A particularly interesting isomer is found, which is topologically connected to the known crystal structure by a low-barrier collective rotation of the icosahedral Au 13 core. The isomerization takes place without breaking of any Au–S bonds. The predicted isomer is essentially iso-energetic with the known Au 25 (SR) 18 − structure, but has a distinctly different optical spectrum. It has a significantly larger collision cross-section as compared to that of the known structure, which suggests it could be detectable in gas phase ion-mobility mass spectrometry.more » « less
-
Using density functional theory (DFT) calculations, we investigated the electrochemical reduction of CO 2 and the competing H 2 evolution reaction on ligand-protected Au 25 nanoclusters (NCs) of different charge states, Au 25 (SR) 18 q ( q = −1, 0, +1). Our results showed that regardless of charge state, CO 2 electroreduction over Au 25 (SR) 18 q NCs was not feasible because of the extreme endothermicity to stabilize the carboxyl (COOH) intermediate. When we accounted for the removal of a ligand (both –SR and –R) from Au 25 (SR) 18 q under electrochemical conditions, surprisingly we found that this is a thermodynamically feasible process at the experimentally applied potentials with the generated surface sites becoming active centers for electrocatalysis. In every case, the negatively charged NCs, losing a ligand from their surface during electrochemical conditions, were found to significantly stabilize the COOH intermediate, resulting in dramatically enhanced CO 2 reduction. The generated sites for CO 2 reduction were also found to be active for H 2 evolution, which agrees with experimental observations that these two processes compete. Interestingly, we found that the removal of an –R ligand from the negatively charged NC, resulted in a catalyst that was both active and selective for CO 2 reduction. This work highlights the importance of both the overall charge state and generation of catalytically active surface sites on ligand-protected NCs, while elucidating the CO 2 electroreduction mechanisms. Overall, our work rationalizes a series of experimental observations and demonstrates pathways to convert a very stable and catalytically inactive NC to an active electrocatalyst.more » « less
An official website of the United States government

