Organic cathode materials have attracted significant research attention recently, yet their low electronic conductivity limits their application as solid-state cathodes in lithium batteries. This work describes the development of a novel organic cathode chemistry with significant intrinsic electronic conductivity for solid-state thin film batteries. A polymeric charge transfer complex (CTC) cathode, poly(4-vinylpyridine)-iodine monochloride (P4VP·ICl), was prepared by initiated chemical vapor deposition (iCVD). Critical chemical, physical, and electrochemical properties of the CTC complex were characterized. The complex was found to have an electronic conductivity of 4 × 10-7 S cm-1 and total conductivity of 2 × 10−6 S cm−1 at room temperature, which allows the construction of a 2.7 μm thick dense cathode. By fabricating a P4VP·ICl|LIPON|Li thin film battery, the discharge capacity of P4VP·ICl was demonstrated to be >320 mA h cm−3 on both rigid and flexible substrates. The flexible P4VP·ICl|LIPON|Li battery was prepared by simply replacing the rigid substrate with a flexible polyimide substrate and the as-prepared battery can be bent 180° while maintaining electrochemical performance. 
                        more » 
                        « less   
                    
                            
                            Chemomechanical behaviors of layered cathode materials in alkali metal ion batteries
                        
                    
    
            Layered cathode materials (LCMs), because of their high energy density and relatively stable performance, represent an important class of cathode materials for alkali metal ion ( e.g. , Li + and Na + ) batteries. Chemomechanical behaviors of LCMs, which affect battery performance dramatically, have drawn extensive attention in recent years. Most chemomechanical processes have some common chemical and structural origins that are at the center of materials chemistry, for example, defects and local bonding environments in the solid state. In this review, we first discuss the chemomechanical breakdown of LCMs by introducing their categories and negative effects on the battery performance. We then systematically analyze factors that govern the initiation and propagation of chemomechanical breakdown and summarize their formation mechanisms. Strategies that can enhance the chemomechanical properties of LCMs or reduce the destructive effects of chemomechanical breakdown are then discussed. Finally, light is shed on the new state-of-the-art techniques that have been applied to study chemomechanical breakdown. This review virtually includes most aspects of the chemomechanical behaviors of LCMs and provides some insights into the important chemical motifs that determine the chemomechanical properties. Therefore, we believe that advanced design protocols of LCMs can be developed to effectively address the chemomechanical breakdown issue of LCMs. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1832613
- PAR ID:
- 10110400
- Date Published:
- Journal Name:
- Journal of Materials Chemistry A
- Volume:
- 6
- Issue:
- 44
- ISSN:
- 2050-7488
- Page Range / eLocation ID:
- 21859 to 21884
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The driving mileage of electric vehicles (EVs) has been substantially improved in recent years with the adoption of Ni-based layered oxide materials as the battery cathode. The average charging period of EVs is still time-consuming, compared with the short refueling time of an internal combustion engine vehicle. With the guidance from the United States Department of Energy, the charging time of refilling 60% of the battery capacity should be less than 6 min for EVs, indicating that the corresponding charging rate for the cathode materials is to be greater than 6C. However, the sluggish kinetic conditions and insufficient thermal stability of the Ni-based layered oxide materials hinder further application in fast-charging operations. Most of the recent review articles regarding Ni-based layered oxide materials as cathodes for lithium-ion batteries (LIBs) only touch degradation mechanisms under slow charging conditions. Of note, the fading mechanisms of the cathode materials for fast-charging, of which the importance abruptly increases due to the development of electric vehicles, may be significantly different from those of slow charging conditions. There are a few review articles regarding fast-charging; however, their perspectives are limited mostly to battery thermal management simulations, lacking experimental validations such as microscale structure degradations of Ni-based layered oxide cathode materials. In this review, a general and fundamental definition of fast-charging is discussed at first, and then we summarize the rate capability required in EVs and the electrochemical and kinetic properties of Ni-based layered oxide cathode materials. Next, the degradation mechanisms of LIBs leveraging Ni-based cathodes under fast-charging operation are systematically discussed from the electrode scale to the particle scale and finally the atom scale (lattice oxygen-level investigation). Then, various strategies to achieve higher rate capability, such as optimizing the synthesis process of cathode particles, fabricating single-crystalline particles, employing electrolyte additives, doping foreign ions, coating protective layers, and engineering the cathode architecture, are detailed. All these strategies need to be considered to enhance the electrochemical performance of Ni-based oxide cathode materials under fast-charging conditions.more » « less
- 
            Abstract Architecting grain crystallographic orientation can modulate charge distribution and chemomechanical properties for enhancing the performance of polycrystalline battery materials. However, probing the interplay between charge distribution, grain crystallographic orientation, and performance remains a daunting challenge. Herein, we elucidate the spatially resolved charge distribution in lithium layered oxides with different grain crystallographic arrangements and establish a model to quantify their charge distributions. While the holistic “surface-to-bulk” charge distribution prevails in polycrystalline particles, the crystallographic orientation-guided redox reaction governs the charge distribution in the local charged nanodomains. Compared to the randomly oriented grains, the radially aligned grains exhibit a lower cell polarization and higher capacity retention upon battery cycling. The radially aligned grains create less tortuous lithium ion pathways, thus improving the charge homogeneity as statistically quantified from over 20 million nanodomains in polycrystalline particles. This study provides an improved understanding of the charge distribution and chemomechanical properties of polycrystalline battery materials.more » « less
- 
            Abstract Mg‐S batteries hold great promise as a potential alternative to Li‐based technologies. Their further development hinges on solving a few key challenges, including the lower capacity and poorer cycling performance when compared to Li counterparts. At the heart of the issues is the lack of knowledge on polysulfide chemical behaviors in the Mg‐S battery environment. In this Review, a comprehensive overview of the current understanding of polysulfide behaviors in Mg‐S batteries is provided. First, a systematic summary of experimental and computational techniques for polysulfide characterization is provided. Next, conversion pathways for Mg polysulfide species within the battery environment are discussed, highlighting the important role of polysulfide solubility in determining reaction kinetics and overall battery performance. The focus then shifts to the negative effects of polysulfide shuttling on Mg‐S batteries. The authors outline various strategies for achieving an optimal balance between polysulfide solubility and shuttling, including the use of electrolyte additives, polysulfide‐trapping materials, and dual‐functional catalysts. Based on the current understanding, the directions for further advancing knowledge of Mg polysulfide chemistry are identified, emphasizing the integration of experiment with computation as a powerful approach to accelerate the development of Mg‐S battery technology.more » « less
- 
            null (Ed.)Zinc-ion battery (ZIB) has been attracting extensive attention due to its high theoretical capacity, high safety, and low cost. However, the exploration of suitable cathode materials to host Zn ions remains a challenge, owing to the strong electrostatic interactions and large steric hindrance effects between Zn ion and host materials. Great efforts have been devoted to the optimization of the structure and electrochemical property of the cathode materials. In this review article, we summarize recent cathode-based strategies to address the issues of performance degradation and structural collapse of electrode materials within the context of microstructure design and ion/charge transport mechanism, and include a perspective to highlight the challenges and promises in the exploitation of cathode materials for further enhancement of the performance of ZIBs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    