skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Discovery of a New Light–Molecule Interaction: Supracence Reveals What Is Missing in Fluorescence Imaging
Abstract The currently understood principles about light–molecule interactions are limited, and thus scientific scope beyond current theories is rarely harvested. Herein we demonstrate supracence phenomena, in which the emitted photons have more energy than the absorbed photons. The extra energy comes from couplings of the absorbed and emitted photon to molecular phonons, whose potentials are constantly exchanging with molecular quantum energy and the environment. Thus, supracence is a linear optical process rather than a nonlinear optical process, such as second harmonic generation. Because supracence results in cooled molecular phonons and thus cooled molecules, behavior opposite to that of hot fluorescing emitters is expected. This report reveals certain supracence principles while contrasting fluorescence with supracence in high‐resolution imaging.  more » « less
Award ID(s):
1744362
PAR ID:
10110494
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
58
Issue:
39
ISSN:
1433-7851
Format(s):
Medium: X Size: p. 13739-13743
Size(s):
p. 13739-13743
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Plasmonic nanostructures have attracted considerable attention for their ability to couple with light and provide strong electromagnetic energy confinement at subwavelength dimensions. The absorbed portion of the captured electromagnetic energy can lead to significant heating of both the nanostructure and its surroundings, resulting in a rich set of nanoscale thermal processes that defines the subfield of thermoplasmonics with applications ranging from nanochemistry and nanobiology to optoelectronics. Recently, phononic nanostructures have started to attract attention as a platform for manipulation of phonons, enabling control over heat propagation and/or mechanical vibrations. The complex interaction phenomena between photons, electrons, and phonons require appropriate modelling strategies to design nanodevices that simultaneously explore and exploit the optical, thermal, and mechanical degrees of freedom. Examples of such devices are micro‐ and nanoscale opto‐thermo‐mechanical systems for sensing, imaging, energy conversion, and harvesting applications. Here, an overview of the fundamental theory and concepts crucial to the modelling of plasmo‐phonon devices is provided. Particular attention is given to micro‐ and nanoscale modelling frameworks, highlighting their validity ranges and the experimental works that contributed to their validation and led to compelling applications. Finally, an open‐ended outlook focused on emerging applications at the intersection between plasmonics and phononics is presented. 
    more » « less
  2. Molecular vibrations are generally responsible for chemical energy transport and dissipation in molecular systems. This transport is fast and efficient if energy is transferred by optical phonons in periodic oligomers, but its efficiency is limited by decoherence emerging due to anharmonic interactions with acoustic phonons. Using a general theoretical model, we show that in the most common case of the optical phonon band being narrower than the acoustic bands, decoherence takes place in two stages. The faster stage involves optical phonon multiple forward scattering due to absorption and emission of transverse acoustic phonons, i.e., collective bending modes with a quadratic spectrum; the transport remains ballistic and the speed can be altered. The subsequent slower stage involves phonon backscattering in multiphonon processes involving two or more acoustic phonons resulting in a switch to diffusive transport. If the initially excited optical phonon possesses a relatively small group velocity, then it is accelerated in the first stage due to its transitions to states propagating faster. This theoretical expectation is consistent with the recent measurements of optical phonon transport velocity in alkane chains, increasing with increasing the chain length. 
    more » « less
  3. Optical refrigeration using anti-Stokes photoluminescence is now well established, especially for rare-earth-doped solids where cooling to cryogenic temperatures has recently been achieved. The cooling efficiency of optical refrigeration is constrained by the requirement that the increase in the entropy of the photon field must be greater than the decrease in the entropy of the sample. Laser radiation has been used in all demonstrated cases of optical refrigeration with the intention of minimizing the entropy of the absorbed photons. Here, we show that as long as the incident radiation is unidirectional, the loss of coherence does not significantly affect the cooling efficiency. Using a general formulation of radiation entropy as the von Neumann entropy of the photon field, we show how the cooling efficiency depends on the properties of the light source, such as wavelength, coherence, and directionality. Our results suggest that the laws of thermodynamics permit optical cooling of materials with incoherent sources, such as light emitting diodes and filtered sunlight, almost as efficiently as with lasers. Our findings have significant and immediate implications for design of compact all-solid-state devices cooled via optical refrigeration. 
    more » « less
  4. Abstract Single-photon defect emitters (SPEs), especially those with magnetically and optically addressable spin states, in technologically mature wide bandgap semiconductors are attractive for realizing integrated platforms for quantum applications. Broadening of the zero phonon line (ZPL) caused by dephasing in solid state SPEs limits the indistinguishability of the emitted photons. Dephasing also limits the use of defect states in quantum information processing, sensing, and metrology. In most defect emitters, such as those in SiC and diamond, interaction with low-energy acoustic phonons determines the temperature dependence of the dephasing rate and the resulting broadening of the ZPL with the temperature obeys a power law. GaN hosts bright and stable single-photon emitters in the 600–700 nm wavelength range with strong ZPLs even at room temperature. In this work, we study the temperature dependence of the ZPL spectra of GaN SPEs integrated with solid immersion lenses with the goal of understanding the relevant dephasing mechanisms. At temperatures below ~ 50 K, the ZPL lineshape is found to be Gaussian and the ZPL linewidth is temperature independent and dominated by spectral diffusion. Above ~ 50 K, the linewidth increases monotonically with the temperature and the lineshape evolves into a Lorentzian. Quite remarkably, the temperature dependence of the linewidth does not follow a power law. We propose a model in which dephasing caused by absorption/emission of optical phonons in an elastic Raman process determines the temperature dependence of the lineshape and the linewidth. Our model explains the temperature dependence of the ZPL linewidth and lineshape in the entire 10–270 K temperature range explored in this work. The ~ 19 meV optical phonon energy extracted by fitting the model to the data matches remarkably well the ~ 18 meV zone center energy of the lowest optical phonon band ($$E_{2}(low)$$ E 2 ( l o w ) ) in GaN. Our work sheds light on the mechanisms responsible for linewidth broadening in GaN SPEs. Since a low energy optical phonon band ($$E_{2}(low)$$ E 2 ( l o w ) ) is a feature of most group III–V nitrides with a wurtzite crystal structure, including hBN and AlN, we expect our proposed mechanism to play an important role in defect emitters in these materials as well. 
    more » « less
  5. Abstract Under photon excitation, 2D materials experience cascading energy transfer from electrons to optical phonons (OPs) and acoustic phonons (APs). Despite few modeling works, it remains a long‐history open problem to distinguish the OP and AP temperatures, not to mention characterizing their energy coupling factor (G). Here, the temperatures of longitudinal/transverse optical (LO/TO) phonons, flexural optical (ZO) phonons, and APs are distinguished by constructing steady and nanosecond (ns) interphonon branch energy transport states and simultaneously probing them using nanosecond energy transport state‐resolved Raman spectroscopy. ΔTOP −APis measured to take more than 30% of the Raman‐probed temperature rise. A breakthrough is made on measuring the intrinsic in‐plane thermal conductivity of suspended nm MoS2and MoSe2by completely excluding the interphonon cascading energy transfer effect, rewriting the Raman‐based thermal conductivity measurement of 2D materials.GOP↔APfor MoS2, MoSe2, and graphene paper (GP) are characterized. For MoS2and MoSe2,GOP↔APis in the order of 1015and 1014W m−3K−1andGZO↔APis much smaller thanGLO/TO↔AP. Under ns laser excitation,GOP↔APis significantly increased, probably due to the reduced phonon scattering time by the significantly increased hot carrier population. For GP,GLO/TO↔APis 0.549 × 1016W m−3K−1, agreeing well with the value of 0.41 × 1016W m−3K−1by first‐principles modeling. 
    more » « less