skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Unified Scheduling for Predictable Communication Reliability in Industrial Cellular Networks
Cellular networks with D2D links are increasingly being explored for mission-critical applications (e.g., real-time control and AR/VR) which require predictable communication reliability. Thus it is critical to control interference among concurrent transmissions in a predictable manner to ensure the required communication reliability. To this end, we propose a Unified Cellular Scheduling (UCS) framework that, based on the Physical-Ratio-K (PRK) interference model, schedules uplink, downlink, and D2D transmissions in a unified manner to ensure predictable communication reliability while maximizing channel spatial reuse. UCS also provides a simple, effective approach to mode selection that maximizes the communication capacity for each involved communication pair. UCS effectively uses multiple channels for high throughput as well as resilience to channel fading and external interference. Leveraging the availability of base stations (BSes) as well as high-speed, out-of-band connectivity between BSes, UCS effectively orchestrates the functionalities of BSes and user equipment (UE) for light-weight control signaling and ease of incremental deployment and integration with existing cellular standards. We have implemented UCS using the open-source, standards-compliant cellular networking platform OpenAirInterface, and we have validated the UCS design and implementation using the USRP B210 software-defined radios in the ORBIT wireless testbed. We have also evaluated UCS through high-fidelity, at-scale simulation studies; we observe that UCS ensures predictable communication reliability while achieving a higher channel spatial reuse rate than existing mechanisms, and that the distributed UCS framework enables a channel spatial reuse rate statistically equal to that in the state-of-the-art centralized scheduling algorithm iOrder.  more » « less
Award ID(s):
1827211 1821962
NSF-PAR ID:
10110515
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE International Conference on Industrial Internet (ICII)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wireless networks are being applied in various industrial sectors, and they are posed to support mission-critical industrial IoT applications which require ultra-reliable, low-latency communications (URLLC). Ensuring predictable per-packet communication reliability is a basis of predictable URLLC, and scheduling and power control are two basic enablers. Scheduling and power control, however, are subject to challenges such as harsh environments, dynamic channels, and distributed network settings in industrial IoT. Existing solutions are mostly based on heuristic algorithms or asymptotic analysis of network performance, and there lack field-deployable algorithms for ensuring predictable per-packet reliability. Towards addressing the gap, we examine the cross-layer design of joint scheduling and power control and analyze the associated challenges. We introduce the Perron–Frobenius theorem to demonstrate that scheduling is a must for ensuring predictable communication reliability, and by investigating characteristics of interference matrices, we show that scheduling with close-by links silent effectively constructs a set of links whose required reliability is feasible with proper transmission power control. Given that scheduling alone is unable to ensure predictable communication reliability while ensuring high throughput and addressing fast-varying channel dynamics, we demonstrate how power control can help improve both the reliability at each time instant and throughput in the long-term. Based on the analysis, we propose a candidate framework of joint scheduling and power control, and we demonstrate how this framework behaves in guaranteeing per-packet communication reliability in the presence of wireless channel dynamics of different time scales. Collectively, these findings provide insight into the cross-layer design of joint scheduling and power control for ensuring predictable per-packet reliability in the presence of wireless network dynamics and uncertainties. 
    more » « less
  2. null (Ed.)
    The concept of Industry 4.0 introduces the unification of industrial Internet-of-Things (IoT), cyber physical systems, and data-driven business modeling to improve production efficiency of the factories. To ensure high production efficiency, Industry 4.0 requires industrial IoT to be adaptable, scalable, real-time, and reliable. Recent successful industrial wireless standards such as WirelessHART appeared as a feasible approach for such industrial IoT. For reliable and real-time communication in highly unreliable environments, they adopt a high degree of redundancy. While a high degree of redundancy is crucial to real-time control, it causes a huge waste of energy, bandwidth, and time under a centralized approach and are therefore less suitable for scalability and handling network dynamics. To address these challenges, we propose DistributedHART—a distributed real-time scheduling system for WirelessHART networks. The essence of our approach is to adopt local (node-level) scheduling through a time window allocation among the nodes that allows each node to schedule its transmissions using a real-time scheduling policy locally and online. DistributedHART obviates the need of creating and disseminating a central global schedule in our approach, thereby significantly reducing resource usage and enhancing the scalability. To our knowledge, it is the first distributed real-time multi-channel scheduler for WirelessHART. We have implemented DistributedHART and experimented on a 130-node testbed. Our testbed experiments as well as simulations show at least 85% less energy consumption in DistributedHART compared to existing centralized approach while ensuring similar schedulability. 
    more » « less
  3. Fifth generation mobile communication systems (5G) have to accommodate both Ultra-Reliable Low-Latency Communication (URLLC) and enhanced Mobile Broadband (eMBB) services. While eMBB applications support high data rates, URLLC services aim at guaranteeing low-latencies and high-reliabilities. eMBB and URLLC services are scheduled on the same frequency band, where the different latency requirements of the communications render their coexistence challenging. In this survey, we review, from an information theoretic perspective, coding schemes that simultaneously accommodate URLLC and eMBB transmissions and show that they outperform traditional scheduling approaches. Various communication scenarios are considered, including point-to-point channels, broadcast channels, interference networks, cellular models, and cloud radio access networks (C-RANs). The main focus is on the set of rate pairs that can simultaneously be achieved for URLLC and eMBB messages, which captures well the tension between the two types of communications. We also discuss finite-blocklength results where the measure of interest is the set of error probability pairs that can simultaneously be achieved in the two communication regimes. 
    more » « less
  4. Channel estimation in rapidly time-varying or short and bursty communication scenarios is costly in terms of both pilot overhead and co-channel interference. In recent work, it was shown that multipath delay-diversity can be exploited to detect multiple co-channel user signals, provided that the relative multipath delays for the different users are distinct, and the two multipath ‘taps’ of each user have roughly commensurate power. These requirements may not hold naturally, however, especially for relatively narrowband or short-range transmissions with small delay spread. As an alternative, this paper advocates using dual antenna transmission in a manner that introduces artificial multipath and tight control of the power of the two channel taps, via baseband processing at the transmitter. The approach enjoys theoretical guarantees and affords simple decoding and accurate synchronization as a side bonus. Similar claims have been previously laid using packet repetition via a single transmit-antenna, but the dual-antenna artificial multipath scheme proposed herein doubles the transmission rate relative to packet repetition. Laboratory experiments using programmable radios are used to demonstrate successful operation of the proposed transmission scheme in practice. 
    more » « less
  5. INTRODUCTION: Apollo-11 (A-11) was the first manned space mission to successfully bring astronauts to the moon and return them safely. Effective team based communications is required for mission specialists to work collaboratively to learn, engage, and solve complex problems. As part of NASA’s goal in assessing team and mission success, all vital speech communications between these personnel were recorded using the multi-track SoundScriber system onto analog tapes, preserving their contribution in the success of one of the greatest achievements in human history. More than +400 personnel served as mission specialists/support who communicated across 30 audio loops, resulting in +9k hours of data for A-11. To ensure success of this mission, it was necessary for teams to communicate, learn, and address problems in a timely manner. Previous research has found that compatibility of individual personalities within teams is important for effective team collaboration of those individuals. Hence, it is essential to identify each speaker’s role during an Apollo mission and analyze group communications for knowledge exchange and problem solving to achieve a common goal. Assessing and analyzing speaker roles during the mission can allow for exploring engagement analysis for multi-party speaker situations. METHOD: The UTDallas Fearless steps Apollo data is comprised of 19,000 hours (A-11,A-13,A-1) possessing unique and multiple challenges as it is characterized by severe noise and degradation as well as overlap instances over the 30 channels. For our study, we have selected a subset of 100 hours manually transcribed by professional annotators for speaker labels. The 100 hours are obtained from three mission critical events: 1. Lift-Off (25 hours) 2. Lunar-Landing (50 hours) 3. Lunar-Walking (25 hours). Five channels of interest, out of 30 channels were selected with the most speech activity, the primary speakers operating these five channels are command/owners of these channels. For our analysis, we select five speaker roles: Flight Director (FD), Capsule Communicator (CAPCOM), Guidance, Navigation and, Control (GNC), Electrical, environmental, and consumables manager (EECOM), and Network (NTWK). To track and tag individual speakers across our Fearless Steps audio dataset, we use the concept of ‘where’s Waldo’ to identify all instances of our speakers-of-interest across a cluster of other speakers. Also, to understand speaker roles of our speaker-of-interests, we use speaker duration of primary speaker vs secondary speaker and speaker turns as our metrics to determine the role of the speaker and to understand their responsibility during the three critical phases of the mission. This enables a content linking capability as well as provide a pathway to analyzing group engagement, group dynamics of people working together in an enclosed space, psychological effects, and cognitive analysis in such individuals. IMPACT: NASA’s Apollo Program stands as one of the most significant contributions to humankind. This collection opens new research options for recognizing team communication, group dynamics, and human engagement/psychology for future deep space missions. Analyzing team communications to achieve such goals would allow for the formulation of educational and training technologies for assessment of STEM knowledge, task learning, and educational feedback. Also, identifying these personnel can help pay tribute and yield personal recognition to the hundreds of notable engineers and scientist who made this feat possible. ILLUSTRATION: In this work, we propose to illustrate how a pre-trained speech/language network can be used to obtain powerful speaker embeddings needed for speaker diarization. This framework is used to build these learned embeddings to label unique speakers over sustained audio streams. To train and test our system, we will make use of Fearless Steps Apollo corpus, allowing us to effectively leverage a limited label information resource (100 hours of labeled data out of +9000 hours). Furthermore, we use the concept of 'Finding Waldo' to identify key speakers of interest (SOI) throughout the Apollo-11 mission audio across multiple channel audio streams. 
    more » « less