skip to main content

Search for: All records

Award ID contains: 1821962

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. This paper presents a novel surface registration technique using the spectrum of the shapes, which can facilitate accurate localization and visualization of non-isometric deformations of the surfaces. In order to register two surfaces, we map both eigenvalues and eigenvectors of the Laplace-Beltrami of the shapes through optimizing an energy function. The function is defined by the integration of a smoothness term to align the eigenvalues and a distance term between the eigenvectors at feature points to align the eigenvectors. The feature points are generated using the static points of certain eigenvectors of the surfaces. By using both the eigenvalues and the eigenvectors on these feature points, the computational efficiency is improved considerably without losing the accuracy in comparison to the approaches that use the eigenvectors for all vertices. After the alignment, the eigenvectors can be employed to calculate the point-to-point correspondence of the surfaces. Therefore, the proposed method can accurately define the displacement of the vertices. We evaluate our method by conducting experiments on synthetic and real data using hippocampus, heart, and hand models. We also compare our method with non-rigid ICP and a similar spectrum-based methods. These experiments demonstrate the advantages and accuracy of our method. 
    more » « less
  3. null (Ed.)
  4. Analyzing the geometric and semantic properties of 3D point clouds through the deep networks is still challenging due to the irregularity and sparsity of samplings of their geometric structures. This paper presents a new method to define and compute convolution directly on 3D point clouds by the proposed annular convolution. This new convolution operator can better capture the local neighborhood geometry of each point by specifying the (regular and dilated) ring-shaped structures and directions in the computation. It can adapt to the geometric variability and scalability at the signal processing level. We apply it to the developed hierarchical neural networks for object classification, part segmentation, and semantic segmentation in large-scale scenes. The extensive experiments and comparisons demonstrate that our approach outperforms the state-of-the-art methods on a variety of standard benchmark datasets (e.g., ModelNet10, ModelNet40, ShapeNetpart, S3DIS, and ScanNet). 
    more » « less
  5. Wireless networks are being applied in various industrial sectors, and they are posed to support mission-critical industrial IoT applications which require ultra-reliable, low-latency communications (URLLC). Ensuring predictable per-packet communication reliability is a basis of predictable URLLC, and scheduling and power control are two basic enablers. Scheduling and power control, however, are subject to challenges such as harsh environments, dynamic channels, and distributed network settings in industrial IoT. Existing solutions are mostly based on heuristic algorithms or asymptotic analysis of network performance, and there lack field-deployable algorithms for ensuring predictable per-packet reliability. Towards addressing the gap, we examine the cross-layer design of joint scheduling and power control and analyze the associated challenges. We introduce the Perron–Frobenius theorem to demonstrate that scheduling is a must for ensuring predictable communication reliability, and by investigating characteristics of interference matrices, we show that scheduling with close-by links silent effectively constructs a set of links whose required reliability is feasible with proper transmission power control. Given that scheduling alone is unable to ensure predictable communication reliability while ensuring high throughput and addressing fast-varying channel dynamics, we demonstrate how power control can help improve both the reliability at each time instant and throughput in the long-term. Based on the analysis, we propose a candidate framework of joint scheduling and power control, and we demonstrate how this framework behaves in guaranteeing per-packet communication reliability in the presence of wireless channel dynamics of different time scales. Collectively, these findings provide insight into the cross-layer design of joint scheduling and power control for ensuring predictable per-packet reliability in the presence of wireless network dynamics and uncertainties. 
    more » « less
  6. Cellular networks with D2D links are increasingly being explored for mission-critical applications (e.g., real-time control and AR/VR) which require predictable communication reliability. Thus it is critical to control interference among concurrent transmissions in a predictable manner to ensure the required communication reliability. To this end, we propose a Unified Cellular Scheduling (UCS) framework that, based on the Physical-Ratio-K (PRK) interference model, schedules uplink, downlink, and D2D transmissions in a unified manner to ensure predictable communication reliability while maximizing channel spatial reuse. UCS also provides a simple, effective approach to mode selection that maximizes the communication capacity for each involved communication pair. UCS effectively uses multiple channels for high throughput as well as resilience to channel fading and external interference. Leveraging the availability of base stations (BSes) as well as high-speed, out-of-band connectivity between BSes, UCS effectively orchestrates the functionalities of BSes and user equipment (UE) for light-weight control signaling and ease of incremental deployment and integration with existing cellular standards. We have implemented UCS using the open-source, standards-compliant cellular networking platform OpenAirInterface, and we have validated the UCS design and implementation using the USRP B210 software-defined radios in the ORBIT wireless testbed. We have also evaluated UCS through high-fidelity, at-scale simulation studies; we observe that UCS ensures predictable communication reliability while achieving a higher channel spatial reuse rate than existing mechanisms, and that the distributed UCS framework enables a channel spatial reuse rate statistically equal to that in the state-of-the-art centralized scheduling algorithm iOrder. 
    more » « less