skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Boosted Sparse and Low-Rank Tensor Regression
We propose a sparse and low-rank tensor regression model to relate a univariate outcome to a feature tensor, in which each unit-rank tensor from the CP decomposition of the coefficient tensor is assumed to be sparse. This structure is both parsimonious and highly interpretable, as it implies that the outcome is related to the features through a few distinct pathways, each of which may only involve subsets of feature dimensions. We take a divide-and-conquer strategy to simplify the task into a set of sparse unit-rank tensor regression problems. To make the computation efficient and scalable, for the unit-rank tensor regression, we propose a stagewise estimation procedure to efficiently trace out its entire solution path. We show that as the step size goes to zero, the stagewise solution paths converge exactly to those of the corresponding regularized regression. The superior performance of our approach is demonstrated on various real-world and synthetic examples.  more » « less
Award ID(s):
1718798 1613295
PAR ID:
10110527
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Advances in neural information processing systems
Volume:
31
ISSN:
1049-5258
Page Range / eLocation ID:
1009-1018
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Tensors are becoming prevalent in modern applications such as medical imaging and digital marketing. In this paper, we propose a sparse tensor additive regression (STAR) that models a scalar response as a flexible nonparametric function of tensor covariates. The proposed model effectively exploits the sparse and low-rank structures in the tensor additive regression. We formulate the parameter estimation as a non-convex optimization problem, and propose an efficient penalized alternating minimization algorithm. We establish a non-asymptotic error bound for the estimator obtained from each iteration of the proposed algorithm, which reveals an interplay between the optimization error and the statistical rate of convergence. We demonstrate the efficacy of STAR through extensive comparative simulation studies, and an application to the click-through-rate prediction in online advertising. 
    more » « less
  2. Lesot, M. (Ed.)
    This article develops a regression framework with a symmetric tensor response and vector predictors. The existing literature involving symmetric tensor response and vector predictors proceeds by vectorizing the tensor response to a multivariate vector, thus ignoring the structural information in the tensor. A few recent approaches have proposed novel regression frameworks exploiting the structure of the symmetric tensor and assume symmetric tensor coefficients corresponding to scalar predictors to be low-rank. Although low-rank constraint on coefficient tensors are computationally efficient, they might appear to be restrictive in some real data applications. Motivated by this, we propose a novel class of regularization or shrinkage priors for the symmetric tensor coefficients. Our modeling framework a-priori expresses a symmetric tensor coefficient as sum of low rank and sparse structures, with both these structures being suitably regularized using Bayesian regularization techniques. The proposed framework allows identification of tensor nodes significantly influenced by each scalar predictor. Our framework is implemented using an efficient Markov Chain Monte Carlo algorithm. Empirical results in simulation studies show competitive performance of the proposed approach over its competitors. 
    more » « less
  3. This monograph describes a novel optimization solution framework, called alternating gradient descent (GD) and minimization (AltGDmin), that is useful for many problems for which alternating minimization (AltMin) is a popular solution. AltMin is a special case of the block coordinate descent algorithm that is useful for problems in which min- imization w.r.t one subset of variables keeping the other fixed is closed form or otherwise reliably solved. Denote the two blocks/subsets of the optimization variables Z by Zslow, Zfast, i.e., Z = {Zslow, Zfast}. AltGDmin is often a faster solution than AltMin for any problem for which (i) the minimization over one set of variables, Zfast, is much quicker than that over the other set, Zslow; and (ii) the cost function is differentiable w.r.t. Zslow. Often, the reason for one minimization to be quicker is that the problem is “decou- pled” for Zfast and each of the decoupled problems is quick to solve. This decoupling is also what makes AltGDmin communication-efficient for federated settings. Important examples where this assumption holds include (a) low rank column-wise compressive sensing (LRCS), low rank matrix completion (LRMC), (b) their outlier-corrupted extensions such as robust PCA, robust LRCS and robust LRMC; (c) phase retrieval and its sparse and low-rank model based extensions; (d) tensor extensions of many of these problems such as tensor LRCS and tensor completion; and (e) many partly discrete problems where GD does not apply – such as clustering, unlabeled sensing, and mixed linear regression. LRCS finds important applications in multi-task representation learning and few shot learning, federated sketching, and accelerated dynamic MRI. LRMC and robust PCA find important applications in recommender systems, computer vision and video analytics. 
    more » « less
  4. We study the tensor robust principal component analysis (TRPCA) problem, a tensorial extension of matrix robust principal component analysis, which aims to split the given tensor into an underlying low-rank component and a sparse outlier component. This work proposes a fast algorithm, called robust tensor CUR decompositions (RTCUR), for large-scale nonconvex TRPCA problems under the Tucker rank setting. RTCUR is developed within a framework of alternating projections that projects between the set of low-rank tensors and the set of sparse tensors. We utilize the recently developed tensor CUR decomposition to substantially reduce the computational complexity in each projection. In addition, we develop four variants of RTCUR for different application settings. We demonstrate the effectiveness and computational advantages of RTCUR against state-of-the-art methods on both synthetic and real-world datasets. 
    more » « less
  5. Canonical polyadic (CP) decomposition of a tensor is a basic operation in a lot of applications such as data mining and video foreground/background separation. However, existing algorithms for CP decomposition require users to provide a rank of the target tensor data as part of the input and finding the rank of a tensor is an NP-hard problem. Currently, to perform CP decomposition, users are required to make an informed guess of a proper tensor rank based on the data at hand, and the result may still be suboptimal. In this paper, we propose to conduct CP decomposition and tensor rank approximation together, so that users do not have to provide the proper rank beforehand, and the decomposition algorithm will find the proper rank and return a high-quality result. We formulate an optimization problem with an objective function consisting of a least-squares Tikhonov regularization and a sparse L1-regularization term. We also test its effectiveness over real applications with moving object videos. 
    more » « less