skip to main content


Title: Boosted Sparse and Low-Rank Tensor Regression
We propose a sparse and low-rank tensor regression model to relate a univariate outcome to a feature tensor, in which each unit-rank tensor from the CP decomposition of the coefficient tensor is assumed to be sparse. This structure is both parsimonious and highly interpretable, as it implies that the outcome is related to the features through a few distinct pathways, each of which may only involve subsets of feature dimensions. We take a divide-and-conquer strategy to simplify the task into a set of sparse unit-rank tensor regression problems. To make the computation efficient and scalable, for the unit-rank tensor regression, we propose a stagewise estimation procedure to efficiently trace out its entire solution path. We show that as the step size goes to zero, the stagewise solution paths converge exactly to those of the corresponding regularized regression. The superior performance of our approach is demonstrated on various real-world and synthetic examples.  more » « less
Award ID(s):
1718798 1613295
PAR ID:
10110527
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Advances in neural information processing systems
Volume:
31
ISSN:
1049-5258
Page Range / eLocation ID:
1009-1018
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Tensors are becoming prevalent in modern applications such as medical imaging and digital marketing. In this paper, we propose a sparse tensor additive regression (STAR) that models a scalar response as a flexible nonparametric function of tensor covariates. The proposed model effectively exploits the sparse and low-rank structures in the tensor additive regression. We formulate the parameter estimation as a non-convex optimization problem, and propose an efficient penalized alternating minimization algorithm. We establish a non-asymptotic error bound for the estimator obtained from each iteration of the proposed algorithm, which reveals an interplay between the optimization error and the statistical rate of convergence. We demonstrate the efficacy of STAR through extensive comparative simulation studies, and an application to the click-through-rate prediction in online advertising. 
    more » « less
  2. Lesot, M. (Ed.)
    This article develops a regression framework with a symmetric tensor response and vector predictors. The existing literature involving symmetric tensor response and vector predictors proceeds by vectorizing the tensor response to a multivariate vector, thus ignoring the structural information in the tensor. A few recent approaches have proposed novel regression frameworks exploiting the structure of the symmetric tensor and assume symmetric tensor coefficients corresponding to scalar predictors to be low-rank. Although low-rank constraint on coefficient tensors are computationally efficient, they might appear to be restrictive in some real data applications. Motivated by this, we propose a novel class of regularization or shrinkage priors for the symmetric tensor coefficients. Our modeling framework a-priori expresses a symmetric tensor coefficient as sum of low rank and sparse structures, with both these structures being suitably regularized using Bayesian regularization techniques. The proposed framework allows identification of tensor nodes significantly influenced by each scalar predictor. Our framework is implemented using an efficient Markov Chain Monte Carlo algorithm. Empirical results in simulation studies show competitive performance of the proposed approach over its competitors. 
    more » « less
  3. Summary

    For a reduced rank multivariate stochastic regression model of rank r*, the regression coefficient matrix can be expressed as a sum of r* unit rank matrices each of which is proportional to the outer product of the left and right singular vectors. For improving predictive accuracy and facilitating interpretation, it is often desirable that these left and right singular vectors be sparse or enjoy some smoothness property. We propose a regularized reduced rank regression approach for solving this problem. Computation algorithms and regularization parameter selection methods are developed, and the properties of the new method are explored both theoretically and by simulation. In particular, the regularization method proposed is shown to be selection consistent and asymptotically normal and to enjoy the oracle property. We apply the proposed model to perform biclustering analysis with microarray gene expression data.

     
    more » « less
  4. Summary

    Forward stagewise estimation is a revived slow-brewing approach for model building that is particularly attractive in dealing with complex data structures for both its computational efficiency and its intrinsic connections with penalized estimation. Under the framework of generalized estimating equations, we study general stagewise estimation approaches that can handle clustered data and non-Gaussian/non-linear models in the presence of prior variable grouping structure. As the grouping structure is often not ideal in that even the important groups may contain irrelevant variables, the key is to simultaneously conduct group selection and within-group variable selection, that is, bi-level selection. We propose two approaches to address the challenge. The first is a bi-level stagewise estimating equations (BiSEE) approach, which is shown to correspond to the sparse group lasso penalized regression. The second is a hierarchical stagewise estimating equations (HiSEE) approach to handle more general hierarchical grouping structure, in which each stagewise estimation step itself is executed as a hierarchical selection process based on the grouping structure. Simulation studies show that BiSEE and HiSEE yield competitive model selection and predictive performance compared to existing approaches. We apply the proposed approaches to study the association between the suicide-related hospitalization rates of the 15–19 age group and the characteristics of the school districts in the State of Connecticut.

     
    more » « less
  5. We study the tensor robust principal component analysis (TRPCA) problem, a tensorial extension of matrix robust principal component analysis, which aims to split the given tensor into an underlying low-rank component and a sparse outlier component. This work proposes a fast algorithm, called robust tensor CUR decompositions (RTCUR), for large-scale nonconvex TRPCA problems under the Tucker rank setting. RTCUR is developed within a framework of alternating projections that projects between the set of low-rank tensors and the set of sparse tensors. We utilize the recently developed tensor CUR decomposition to substantially reduce the computational complexity in each projection. In addition, we develop four variants of RTCUR for different application settings. We demonstrate the effectiveness and computational advantages of RTCUR against state-of-the-art methods on both synthetic and real-world datasets. 
    more » « less