skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sparse Tensor Additive Regression
Tensors are becoming prevalent in modern applications such as medical imaging and digital marketing. In this paper, we propose a sparse tensor additive regression (STAR) that models a scalar response as a flexible nonparametric function of tensor covariates. The proposed model effectively exploits the sparse and low-rank structures in the tensor additive regression. We formulate the parameter estimation as a non-convex optimization problem, and propose an efficient penalized alternating minimization algorithm. We establish a non-asymptotic error bound for the estimator obtained from each iteration of the proposed algorithm, which reveals an interplay between the optimization error and the statistical rate of convergence. We demonstrate the efficacy of STAR through extensive comparative simulation studies, and an application to the click-through-rate prediction in online advertising.  more » « less
Award ID(s):
2015190
PAR ID:
10225413
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of machine learning research
Volume:
22
ISSN:
1533-7928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In many real-world applications of monitoring multivariate spatio-temporal data that are non-stationary over time, one is often interested in detecting hot-spots with spatial sparsity and temporal consistency, instead of detecting system-wise changes as in traditional statistical process control (SPC) literature. In this paper, we propose an efficient method to detect hot-spots through tensor decomposition, and our method has three steps. First, we fit the observed data into a Smooth Sparse Decomposition Tensor (SSD-Tensor) model that serves as a dimension reduction and de-noising technique: it is an additive model decomposing the original data into: smooth but non-stationary global mean, sparse local anomalies, and random noises. Next, we estimate model parameters by the penalized framework that includes Least Absolute Shrinkage and Selection Operator (LASSO) and fused LASSO penalty. An efficient recursive optimization algorithm is developed based on Fast Iterative Shrinkage Thresholding Algorithm (FISTA). Finally, we apply a Cumulative Sum (CUSUM) Control Chart to monitor model residuals after removing global means, which helps to detect when and where hot-spots occur. To demonstrate the usefulness of our proposed SSD-Tensor method, we compare it with several other methods including scan statistics, LASSO-based, PCA-based, T2-based control chart in extensive numerical simulation studies and a real crime rate dataset. 
    more » « less
  2. We explore algorithms and limitations for sparse optimization problems such as sparse linear regression and robust linear regression. The goal of the sparse linear regression problem is to identify a small number of key features, while the goal of the robust linear regression problem is to identify a small number of erroneous measurements. Specifically, the sparse linear regression problem seeks a k-sparse vector x ∈ Rd to minimize ‖Ax − b‖2, given an input matrix A ∈ Rn×d and a target vector b ∈ Rn, while the robust linear regression problem seeks a set S that ignores at most k rows and a vector x to minimize ‖(Ax − b)S ‖2. We first show bicriteria, NP-hardness of approximation for robust regression building on the work of [OWZ15] which implies a similar result for sparse regression. We further show fine-grained hardness of robust regression through a reduction from the minimum-weight k-clique conjecture. On the positive side, we give an algorithm for robust regression that achieves arbitrarily accurate additive error and uses runtime that closely matches the lower bound from the fine-grained hardness result, as well as an algorithm for sparse regression with similar runtime. Both our upper and lower bounds rely on a general reduction from robust linear regression to sparse regression that we introduce. Our algorithms, inspired by the 3SUM problem, use approximate nearest neighbor data structures and may be of independent interest for solving sparse optimization problems. For instance, we demonstrate that our techniques can also be used for the well-studied sparse PCA problem. 
    more » « less
  3. This study addresses the problem of convolutional kernel learning in univariate, multivariate, and multidimensional time series data, which is crucial for interpreting temporal patterns in time series and supporting downstream machine learning tasks. First, we propose formulating convolutional kernel learning for univariate time series as a sparse regression problem with a non-negative constraint, leveraging the properties of circular convolution and circulant matrices. Second, to generalize this approach to multivariate and multidimensional time series data, we use tensor computations, reformulating the convolutional kernel learning problem in the form of tensors. This is further converted into a standard sparse regression problem through vectorization and tensor unfolding operations. In the proposed methodology, the optimization problem is addressed using the existing non-negative subspace pursuit method, enabling the convolutional kernel to capture temporal correlations and patterns. To evaluate the proposed model, we apply it to several real-world time series datasets. On the multidimensional ridesharing and taxi trip data from New York City and Chicago, the convolutional kernels reveal interpretable local correlations and cyclical patterns, such as weekly seasonality. For the monthly temperature time series data in North America, the proposed model can quantify the yearly seasonality and make it comparable across different decades. In the context of multidimensional fluid flow data, both local and nonlocal correlations captured by the convolutional kernels can reinforce tensor factorization, leading to performance improvements in fluid flow reconstruction tasks. Thus, this study lays an insightful foundation for automatically learning convolutional kernels from time series data, with an emphasis on interpretability through sparsity and non-negativity constraints. 
    more » « less
  4. The mean squared error loss is widely used in many applications, including auto-encoders, multi-target regression, and matrix factorization, to name a few. Despite computational advantages due to its differentiability, it is not robust to outliers. In contrast, ℓ𝑝 norms are known to be robust, but cannot be optimized via, e.g., stochastic gradient descent, as they are non-differentiable. We propose an algorithm inspired by so-called model-based optimization (MBO), which replaces a non-convex objective with a convex model function and alternates between optimizing the model function and updating the solution. We apply this to robust regression, proposing SADM, a stochastic variant of the Online Alternating Direction Method of Multipliers (OADM) to solve the inner optimization in MBO. We show that SADM converges with the rate 𝑂(log𝑇/𝑇) . Finally, we demonstrate experimentally (a) the robustness of ℓ𝑝 norms to outliers and (b) the efficiency of our proposed model-based algorithms in comparison with gradient methods on autoencoders and multi-target regression. 
    more » « less
  5. We consider the differentially private sparse learning problem, where the goal is to estimate the underlying sparse parameter vector of a statistical model in the high-dimensional regime while preserving the privacy of each training example. We propose a generic differentially private iterative gradient hard threshoding algorithm with a linear convergence rate and strong utility guarantee. We demonstrate the superiority of our algorithm through two specific applications: sparse linear regression and sparse logistic regression. Specifically, for sparse linear regression, our algorithm can achieve the best known utility guarantee without any extra support selection procedure used in previous work [Kifer et al., 2012]. For sparse logistic regression, our algorithm can obtain the utility guarantee with a logarithmic dependence on the problem dimension. Experiments on both synthetic data and real world datasets verify the effectiveness of our proposed algorithm. 
    more » « less