skip to main content


Title: A High School Computational Modeling Approach to Studying the Effects of Climate Change on Coral Reefs
The devastating impact of climate change on coral reefs has reinforced our need to better understand their causes, especially the ones related to humans. Simultaneously, we need to raise awareness about the significance of reefs, both as an ecological host to twenty-five percent of marine life and as a key economic resource for millions of people. Opportunities afforded through coral reef research coupled with advances in computational modeling platforms may provide a unique opportunity to introduce the study of corals into K-12 STEM curricula by combining computational thinking (CT) constructs to build computational models that allow students to explore and systematically study the effects of climate change on the reefs. We outline such a computational modeling curriculum in this paper.  more » « less
Award ID(s):
1640199
NSF-PAR ID:
10110543
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Annual Meeting of the American Education Research Association
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Given the severe implications of climate change and ocean acidification (OA) for marine ecosystems, there is an urgent need to quantify ecosystem function in present‐day conditions to determine the impacts of future changes in environmental conditions. For tropical coral reefs that are acutely threatened by these effects, the metabolism of benthic communities provides several metrics suitable for this purpose, but the application of infrastructure to manipulate conditions and measure community responses is not fully realized. To date, most studies of the effects of OA on coral reefs have been conducted ex situ, and while greater ecological relevance can be achieved through free ocean carbon enrichment (FOCE) experiments on undisturbed areas of reef, such approaches have been deterred by technical challenges (e.g., spatial scale and duration, stable maintenance of conditions). In this study, we describe novel experimental infrastructure called shallow coral reef (SCoRe) FOCE to overcome these challenges and present data from a proof of concept application in Mo'orea, French Polynesia. Our objectives were to (1) implement an autonomous system that could be deployed kilometers from shore, (2) regulate the chemical (pCO2) and physical properties of seawater over undisturbed, shallow (∼2–5‐m depth) coral reef over multiple weeks, and (3) measure the metabolic response of the coral community to the treatment conditions. We describe the design, function, and application of the SCoRe FOCE, and present data demonstrating its efficacy. This infrastructure has great potential for advancing ecologically relevant studies of the effects of changing environmental conditions on coral reefs.

     
    more » « less
  2. Abstract

    Declining natural resources have contributed to a cultural renaissance across the Pacific that seeks to revive customary ridge‐to‐reef management approaches to protect freshwater and restore abundant coral reef fisheries. We applied a linked land–sea modeling framework based on remote sensing and empirical data, which couples groundwater nutrient export and coral reef models at fine spatial resolution. This spatially explicit (60 × 60 m) framework simultaneously tracks changes in multiple benthic and fish indicators as a function of community‐led marine closures, land‐use and climate change scenarios. We applied this framework in Hā‘ena and Ka‘ūpūlehu, located at opposite ends of the Hawaiian Archipelago to investigate the effects of coastal development and marine closures on coral reefs in the face of climate change. Our results indicated that projected coastal development and bleaching can result in a significant decrease in benthic habitat quality and community‐led marine closures can result in a significant increase in fish biomass. In general, Ka‘ūpūlehu is more vulnerable to land‐based nutrients and coral bleaching than Hā‘ena due to high coral cover and limited dilution and mixing from low rainfall and wave power, except for the shallow and wave‐sheltered back‐reef areas of Hā‘ena, which support high coral cover and act as nursery habitat for fishes. By coupling spatially explicit land–sea models with scenario planning, we identified priority areas on land where upgrading cesspools can reduce human impacts on coral reefs in the face of projected climate change impacts.

     
    more » « less
  3. Abstract

    Rising temperatures and ocean acidification due to anthropogenic climate change pose ominous threats to coral reef ecosystems in the Gulf of Mexico (GoM) and the western Caribbean Sea. Unfortunately, the once structurally complex coral reefs in the GoM and Caribbean have dramatically declined since the 1970s; relatively few coral reefs still exhibit a mean live coral cover of >10%. Additional work is needed to characterize future climate stressors on coral reefs in the GoM and the Caribbean Sea. Here, we use climate model simulations spanning the period of 2015–2100 to partition and assess the individual impacts of climate stressors on corals in the GoM and the western Caribbean Sea. We use a top‐down modeling framework to diagnose future projected changes in thermal stress and ocean acidification and discuss its implications for coral reef ecosystems. We find that ocean temperatures increase by 2°C–3°C over the 21st century, and surpass reported regional bleaching thresholds by mid‐century. Whereas ocean acidification occurs, the rate and magnitude of temperature changes outpace and outweigh the impacts of changes in aragonite saturation state. A framework for quantifying and communicating future risks in the GoM and Caribbean using reef risk projection maps is discussed. Without substantial mitigation efforts, the combined impact of increasing ocean temperatures and acidification are likely to stress most existing corals in the GoM and the Caribbean, with widespread economic and ecological consequences.

     
    more » « less
  4. To better understand the decline of one of earth’s most biodiverse habitats, coral reefs, many survey programs employ regular photographs of the benthos. An emerging challenge is the time required to annotate the large volume of digital imagery generated by these surveys. Here, we leverage existing machine-learning tools (CoralNet) and develop new fit-to-purpose programs to process and score benthic photoquadrats using five years of data from the Smithsonian MarineGEO Network’s biodiversity monitoring program at Carrie Bow Cay, Belize. Our analysis shows that scleractinian coral cover on forereef sites (at depths of 3–10 m) along our surveyed transects increased significantly from 6 to 13% during this period. More modest changes in macroalgae, turf algae, and sponge cover were also observed. Community-wide analysis confirmed a significant shift in benthic structure, and follow-up in situ surveys of coral demographics in 2019 revealed that the emerging coral communities are dominated by fast-recruiting and growing coral species belonging to the genera Agaricia and Porites. While the positive trajectory reported here is promising, Belizean reefs face persistent challenges related to overfishing and climate change. Open-source computational toolkits offer promise for increasing the efficiency of reef monitoring, and therefore our ability to assess the future of coral reefs in the face of rapid environmental change. 
    more » « less
  5. Abstract

    Thermal‐stress events that cause coral bleaching and mortality have recently increased in frequency and severity. Yet few studies have explored conditions that moderate coral bleaching. Given that high light and high ocean temperature together cause coral bleaching, we explore whether corals at turbid localities, with reduced light, are less likely to bleach during thermal‐stress events than corals at other localities. We analyzed coral bleaching, temperature, and turbidity data from 3,694 sites worldwide with a Bayesian model and found thatKd490, a measurement positively related to turbidity, between 0.080 and 0.127 reduced coral bleaching during thermal‐stress events. Approximately 12% of the world's reefs exist within this “moderating turbidity” range, and 30% of reefs that have moderating turbidity are in the Coral Triangle. We suggest that these turbid nearshore environments may provide some refuge through climate change, but these reefs will need high conservation status to sustain them close to dense human populations.

     
    more » « less