skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A High School Computational Modeling Approach to Studying the Effects of Climate Change on Coral Reefs
The devastating impact of climate change on coral reefs has reinforced our need to better understand their causes, especially the ones related to humans. Simultaneously, we need to raise awareness about the significance of reefs, both as an ecological host to twenty-five percent of marine life and as a key economic resource for millions of people. Opportunities afforded through coral reef research coupled with advances in computational modeling platforms may provide a unique opportunity to introduce the study of corals into K-12 STEM curricula by combining computational thinking (CT) constructs to build computational models that allow students to explore and systematically study the effects of climate change on the reefs. We outline such a computational modeling curriculum in this paper.  more » « less
Award ID(s):
1640199
PAR ID:
10110543
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Annual Meeting of the American Education Research Association
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Plail, Melissa (Ed.)
    Marine heatwaves are increasing in intensity and frequency, causing worldwide coral bleaching, reductions in coral cover, and shifts in species composition. Recent studies have found, however, that inshore turbid reefs are more resistant to heat stress than offshore clear-water reefs. Inshore turbid reefs, therefore, may play a critical role as climate-change refuges for contemporary coral reefs subjected to marine heatwaves. This perspective explores the importance of inshore reefs in the past, present, and future. Paleo records show that inshore reefs were also crucial as refuges during historically warm periods. Yet, contemporary inshore reefs are especially vulnerable to pollution and land-use-change runoff, which were absent in paleo times. Therefore, inshore reefs need strategic management and protection to maintain their role as climate-change refugia as the oceans continue to warm. 
    more » « less
  2. Abstract Recent warm temperatures driven by climate change have caused mass coral bleaching and mortality across the world, prompting managers, policymakers, and conservation practitioners to embrace restoration as a strategy to sustain coral reefs. Despite a proliferation of new coral reef restoration efforts globally and increasing scientific recognition and research on interventions aimed at supporting reef resilience to climate impacts, few restoration programs are currently incorporating climate change and resilience in project design. As climate change will continue to degrade coral reefs for decades to come, guidance is needed to support managers and restoration practitioners to conduct restoration that promotes resilience through enhanced coral reef recovery, resistance, and adaptation. Here, we address this critical implementation gap by providing recommendations that integrate resilience principles into restoration design and practice, including for project planning and design, coral selection, site selection, and broader ecosystem context. We also discuss future opportunities to improve restoration methods to support enhanced outcomes for coral reefs in response to climate change. As coral reefs are one of the most vulnerable ecosystems to climate change, interventions that enhance reef resilience will help to ensure restoration efforts have a greater chance of success in a warming world. They are also more likely to provide essential contributions to global targets to protect natural biodiversity and the human communities that rely on reefs. 
    more » « less
  3. Climate change threatens coral reefs by causing heat stress events that lead to widespread coral bleaching and mortality. Given the global nature of these mass coral mortality events, recent studies argue that mitigating climate change is the only path to conserve coral reefs. Using a global analysis of 223 sites, we show that local stressors act synergistically with climate change to kill corals. Local factors such as high abundance of macroalgae or urchins magnified coral loss in the year after bleaching. Notably, the combined effects of increasing heat stress and macroalgae intensified coral loss. Our results offer an optimistic premise that effective local management, alongside global efforts to mitigate climate change, can help coral reefs survive the Anthropocene. 
    more » « less
  4. Abstract Coral reefs worldwide are threatened by thermal stress caused by climate change. Especially devastating periods of coral loss frequently occur during El Niño‐Southern Oscillation (ENSO) events originating in the Eastern Tropical Pacific (ETP). El Niño‐induced thermal stress is considered the primary threat to ETP coral reefs. An increase in the frequency and intensity of ENSO events predicted in the coming decades threatens a pan‐tropical collapse of coral reefs. During the 1982–1983 El Niño, most reefs in the Galapagos Islands collapsed, and many more in the region were decimated by massive coral bleaching and mortality. However, after repeated thermal stress disturbances, such as those caused by the 1997–1998 El Niño, ETP corals reefs have demonstrated regional persistence and resiliency. Using a 44 year dataset (1970–2014) of live coral cover from the ETP, we assess whether ETP reefs exhibit the same decline as seen globally for other reefs. Also, we compare the ETP live coral cover rate of change with data from the maximum Degree Heating Weeks experienced by these reefs to assess the role of thermal stress on coral reef survival. We find that during the period 1970–2014, ETP coral cover exhibited temporary reductions following major ENSO events, but no overall decline. Further, we find that ETP reef recovery patterns allow coral to persist under these El Niño‐stressed conditions, often recovering from these events in 10–15 years. Accumulative heat stress explains 31% of the overall annual rate of change of living coral cover in the ETP. This suggests that ETP coral reefs have adapted to thermal extremes to date, and may have the ability to adapt to near‐term future climate‐change thermal anomalies. These findings for ETP reef resilience may provide general insights for the future of coral reef survival and recovery elsewhere under intensifying El Niño scenarios. 
    more » « less
  5. Abstract Coral reefs continue to experience extreme environmental pressure from climate change stressors, but many coral reefs are also exposed to eutrophication. It has been proposed that changes in the stoichiometry of ambient nutrients increase the mortality of corals, whereas eutrophication may facilitate phase shifts to macroalgae-dominated coral reefs when herbivory is low or absent. But are corals ever nutrient limited, and can eutrophication destabilize the coral symbiosis making it more sensitive to environmental stress because of climate change? The effects of eutrophication are confounded not just by the effects of climate change but by the presence of chemical pollutants in industrial, urban, and agricultural wastes. Because of these confounding effects, the increases in nutrients or changes in their stoichiometry in coastal environments, although they are important at the organismal and community level, cannot currently be disentangled from each other or from the more significant effects of climate change stressors on coral reefs. 
    more » « less