skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluating a Scalable Program for Undergraduate CS Research
Undergraduate research experiences have been shown to have many positive effects on undergraduates including increased confidence, sense of belonging and retention. However, many previous studies of undergraduate research experiences have focused on advanced undergraduate (juniors and seniors) in one-on-one research experiences with a faculty mentor. Less is known about the effects of early undergraduate research, particularly via opportunities that scale beyond one-on-one faculty-student relationships to encompass large numbers of early undergraduates. The research question addressed in this work is whether a more scalable group-based research model aimed at early undergraduates from groups underrepresented in computing would show the same kinds of benefits for participants as more personalized one-on-one programs aimed at more advanced students. We evaluated a group-based early research program in the computer science department of a large public university. Through survey data and direct measurements of performance and retention several years after students had completed the program, we found that students who participated in this program have higher overall GPAs, more confidence, and more interest in research compared to several different control groups. Our design also allowed us to examine the considerable impact that selection bias can have on the evaluation of research programs. This work both validates the scalable structure of this research program and provides a richer perspective on the benefits of early undergraduate research in CS.  more » « less
Award ID(s):
1821521
PAR ID:
10110634
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 2019 ACM Conference on International Computing Education Research
Page Range / eLocation ID:
269 to 277
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Building on prior studies that show a sense of belonging and community bolster student success, we developed a pilot program for computer engineering (CpE) and computer science (CS) undergraduates and their families that focused on building a sense of belonging and community supported by co-curricular and socioeconomic scaffolding. As a dually designated Hispanic-Serving Institution (HSI) and Asian American and Native American Pacific Islander-Serving Institution (AANAPISI) – two types of federally designated Minority-Serving Institutions (MSI) – with 55% of our undergraduates being first-generation students, we aimed to demonstrate the importance of these principles for underrepresented and first-generation students. Using a student cohort model (for each incoming group of students) and also providing supports to build community across cohorts as well as including students’ families in their college experiences, our program aimed to increase student satisfaction and academic success. We recruited two cohorts of nine incoming students each across two years, 2019 and 2020; 69% of participants were from underrepresented racial or minority groups and 33% were women. Each participant was awarded an annual scholarship and given co-curricular support including peer and faculty mentoring, a dedicated cohort space for studying and gathering, monthly co-curricular activities, enhanced tutoring, and summer bridge and orientation programs. Students’ families were also included in the orientation and semi-annual meetings. The program has resulted in students exceeding the retention rates of their comparison groups, which were undergraduates majoring in CpE and CS who entered college in the same semester as the cohorts; first- and second-year retention rates for participants were 83% (compared to 72%) and 67% (compared to 57%). The GPAs of participants were 0.35 points higher on average than the comparison group and, most notably, participants completed 50% more credits than their comparison groups, on average. In addition, 9 of the 18 scholars (all of the students who wanted to participate) engaged in summer research or internships. In combination, the cohort building, inclusion of families, financial literacy education and support, and formal and informal peer and faculty mentoring have correlated with increased academic success. The cohorts are finishing their programs in Spring 2023 and Spring 2024, but data up to this point already show increases in GPA, course completion, and retention and graduation rates, with three students having already graduated early, within three and a half years. The findings from this study are now being used to expand the successful parts of the program and inform university initiatives, with the PI serving on campus-wide STEM pipeline committee aiming to recruit, retain, and support more STEM students at the institution. 
    more » « less
  2. Undergraduate research is well recognized as an effective high-impact educational practice associated with student success in higher education. Actively engaging students in research experiences is considered as one of the several high-impact practices by many agencies including the American Chemical Society. Developing and maintaining an active undergraduate research program benefits both the faculty and students especially those from under-represented minority groups (URM). The infusion of research experiences into undergraduate curriculum enables students from all backgrounds to develop independent critical thinking skills, written and oral communications skills that are very important for successful careers in “STEM” area. Several strategies and activities such as a Peer Mentoring Program (PMP), funded research activities, the infusion of research into organic chemistry labs, undergraduate professional development, research group meetings, presentations at regional/national conferences, and publishing as co-authors on peer-review papers are vital in creating a welcoming research group that promotes the diversity, equity, and inclusion in organic chemistry education. The experiences working on funded research projects, presenting their research data at conferences and publishing papers as co-authors will greatly increase the under-represented minority (URM) students’ chance in landing a job or getting admitted into graduate/professional programs in STEM area. 
    more » « less
  3. Engaging undergraduates in research has been shown to improve retention, increase students' sense of computer science identity, and increase their chances of continuing to graduate school. Yet research experiences at most universities are ad hoc, and many undergraduates-particularly those from groups underrepresented in computing-do not have the opportunity to participate. The Early Research Scholars Program (ERSP) is a structured, academic-year group-based undergraduate research program designed to help universities vastly increase participation in research for early computing undergraduates. ERSP launched at UC San Diego in 2014 where it now annually engages over 50 second-year undergraduates, 59% of whom are women, and 22% of whom are from underrepresented racial and ethnic groups. The program's portable design has enabled its expansion to 7 other colleges and universities. This workshop will train participants in launching ERSP (or any part of it) at their university to increase and diversify the undergraduates participating in research. Workshop leaders are the ERSP directors at four universities. They will address how to launch and run the program in different contexts. They will provide an interactive, hands-on experience of running the program covering the following topics: developing and teaching a research methods class, student application and selection to ensure a diverse and supportive cohort, and creating a dual-mentoring structure to engage and retain early undergraduates without overburdening faculty. Workshop participants will be invited to join the ERSP virtual community to get support launching their own version of ERSP. 
    more » « less
  4. Opportunities for undergraduate research in STEM programs at community colleges can be few where lower-division science curriculum emphasizes classroom and laboratory-based learning and research laboratories are limited in number. This is particularly true in the geosciences where specialized programs are extremely rare. Urban serving academic research institutions have a unique role and opportunity to partner with regional community college programs for undergraduate research early-on in student post-secondary educational experiences. Programs built for community college transfer students to urban serving undergraduate programs can serve to integrate students into major programs and help reduce transfer shock. The benefits of exploring research as an undergraduate scholar are numerous and include: building towards mastery of technical skills; developing problem-solving in a real-world environment; reading and digesting scientific literature; analyzing experimental and simulation data; working independently and as part of a team; developing a mentoring relationship with a research advisor; and building a sense of belonging and confidence in a scientific field. However, many undergraduate research internships are targeted towards junior-level STEM majors already engaged in upper-division coursework and considering graduate school which effectively excludes community college students from participating. The Center for Climate and Aerosol Research (CCAR) Research Experience for Undergraduate program at Portland State University serves to help build the future diverse research community. 10-week intern research experiences are paired with an expert faculty mentor are designed for students majoring in the natural/physical sciences but not necessarily with a background in climate or atmospheric science. Additional programmatic activities include: 1-week orientation and training using short courses, faculty research seminars, and hands-on group workshops; academic professional and career development workshops throughout summer; journal club activities; final presentations at end of summer CCAR symposium; opportunities for travel for student presentations at scientific conferences; and social activities. Open to all qualifying undergraduates, since 2014 the program recruits primarily from regional (Northwest) community colleges, rural schools, and Native American serving institutions; recruiting students who would be unlikely to be otherwise exposed to such opportunities at their home institution. Over the past 9 cohorts of REU interns (2014-2019), approximately one third of CCAR REU scholars are community colleges students. Here we present criteria employed for selection of REU scholars and an analysis of selection biases in a comparison of students from community colleges, 4-year colleges, and PhD granting universities. We further investigate differential outcomes in efficacy of the REU program using evaluation data to assess changes over the program including: knowledge, intrinsic motivation, extrinsic motivation, science identity, program satisfaction, and career aspirations. In this presentation, we present these findings along with supportive qualitative analyses and discuss their implications for community college students in undergraduate research programs in geosciences. 
    more » « less
  5. Training future engineers and scientists for the research-oriented careers necessary to deliver solutions to the challenges of hypersonic flight is important task for the aerospace community at-large. A number of programs and initiatives at the University of Central Florida (UCF) contribute to this need. Among them is the Research Experiences for Undergraduates (REU) site framed on HYpersonic, Propulsive, Energetic, and Reusable Platforms (HYPER) an program housed withing the Center for Advanced Turbomachinery Energy Research (CATER). This residential summer program convening on the UCF main campus prepares a group of undergraduate students to pursue doctoral-level degree programs in aerospace engineering and related disciplines. During the Summer 2021, the second term of the program, HYPER hosted fourteen students. Students conducted intensive research under the guidance of faculty mentors and their graduate student assistants. To support their complete development, HYPER students participated in industry tours, software training, technical seminars, and more. This paper reports the impact of the program in its second year. Data are derived from pre- and post-experience surveys, study groups, and technical assessment activities. Feedback from the first year were implemented in the second year. 
    more » « less