As machine learning (ML) systems become pervasive, safeguarding their security is critical. However, recently it has been demonstrated that motivated adversaries are able to mislead ML systems by perturbing test data using semantic transformations. While there exists a rich body of research providing provable robustness guarantees for ML models against ℓp norm bounded adversarial perturbations, guarantees against semantic perturbations remain largely underexplored. In this paper, we provide TSS -- a unified framework for certifying ML robustness against general adversarial semantic transformations. First, depending on the properties of each transformation, we divide common transformations into two categories, namely resolvable (e.g., Gaussian blur) and differentially resolvable (e.g., rotation) transformations. For the former, we propose transformation-specific randomized smoothing strategies and obtain strong robustness certification. The latter category covers transformations that involve interpolation errors, and we propose a novel approach based on stratified sampling to certify the robustness. Our framework TSS leverages these certification strategies and combines with consistency-enhanced training to provide rigorous certification of robustness. We conduct extensive experiments on over ten types of challenging semantic transformations and show that TSS significantly outperforms the state of the art. Moreover, to the best of our knowledge, TSS is the first approach that achieves nontrivial certified robustness on the large-scale ImageNet dataset. For instance, our framework achieves 30.4% certified robust accuracy against rotation attack (within ±30∘) on ImageNet. Moreover, to consider a broader range of transformations, we show TSS is also robust against adaptive attacks and unforeseen image corruptions such as CIFAR-10-C and ImageNet-C.
more »
« less
Cost-Sensitive Robustness against Adversarial Examples
Several recent works have developed methods for training classifiers that are certifiably robust against norm-bounded adversarial perturbations. However, these methods assume that all the adversarial transformations provide equal value for adversaries, which is seldom the case in real-world applications. We advocate for cost-sensitive robustness as the criteria for measuring the classifier's performance for specific tasks. We encode the potential harm of different adversarial transformations in a cost matrix, and propose a general objective function to adapt the robust training method of Wong & Kolter (2018) to optimize for cost-sensitive robustness. Our experiments on simple MNIST and CIFAR10 models and a variety of cost matrices show that the proposed approach can produce models with substantially reduced cost-sensitive robust error, while maintaining classification accuracy.
more »
« less
- Award ID(s):
- 1804603
- PAR ID:
- 10110797
- Date Published:
- Journal Name:
- Seventh International Conference on Learning Representations
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Adversarial training is an effective defense method to protect classification models against adversarial attacks. However, one limitation of this approach is that it can re- quire orders of magnitude additional training time due to high cost of generating strong adversarial examples dur- ing training. In this paper, we first show that there is high transferability between models from neighboring epochs in the same training process, i.e., adversarial examples from one epoch continue to be adversarial in subsequent epochs. Leveraging this property, we propose a novel method, Adversarial Training with Transferable Adversarial Examples (ATTA), that can enhance the robustness of trained models and greatly improve the training efficiency by accumulating adversarial perturbations through epochs. Compared to state-of-the-art adversarial training methods, ATTA enhances adversarial accuracy by up to 7.2% on CIFAR10 and requires 12 ∼ 14× less training time on MNIST and CIFAR10 datasets with comparable model robustness.more » « less
-
Although a substantial amount of studies is dedicated to morphing detection, most of them fail to generalize for morph faces outside of their training paradigm. Moreover, recent morph detection methods are highly vulnerable to adversarial attacks. In this paper, we intend to learn a morph detection model with high generalization to a wide range of morphing attacks and high robustness against different adversarial attacks. To this aim, we develop an ensemble of convolutional neural networks (CNNs) and Transformer models to benefit from their capabilities simultaneously. To improve the robust accuracy of the ensemble model, we employ multi-perturbation adversarial training and generate adversarial examples with high transferability for several single models. Our exhaustive evaluations demonstrate that the proposed robust ensemble model generalizes to several morphing attacks and face datasets. In addition, we validate that our robust ensemble model gains better robustness against several adversarial attacks while outperforming the state-of-the-art studies.more » « less
-
We investigate the role of representations and architectures for classifying 3D shapes in terms of their computational efficiency, generalization, and robustness to adversarial transformations. By varying the number of training examples and employing cross-modal transfer learning we study the role of initialization of existing deep architectures for 3D shape classification. Our analysis shows that multiview methods continue to offer the best generalization even without pretraining on large labeled image datasets, and even when trained on simplified inputs such as binary silhouettes. Furthermore, the performance of voxel-based 3D convolutional networks and point-based architectures can be improved via cross-modal transfer from image representations. Finally, we analyze the robustness of 3D shape classifiers to adversarial transformations and present a novel approach for generating adversarial perturbations of a 3D shape for multiview classifiers using a differentiable renderer. We find that point-based networks are more robust to point position perturbations while voxel-based and multiview networks are easily fooled with the addition of imperceptible noise to the input.more » « less
-
Low-dimensional structure of data can solve the adversarial robustness-accuracy conflict for machine learning systems. Modern machine learning systems have demonstrated breakthrough performance in a multitude of applications. However, they are known to be highly vulnerable to small perturbations to the input data, known as adversarial attacks. There are many well-documented examples of such behavior, for example small perturbations of an image, which is imperceptible to a human, can significantly degrade performance of modern classifiers. Adversarial training has been put forward as a way to improve robustness of learning algorithms to adversarial attacks. However, this benefit often comes at the cost of decreasing accuracy on natural unperturbed inputs, pointing to a potential conflict between adversarial robustness and standard accuracy. In “Adversarial robustness for latent models: Revisiting the robust-standard accuracies tradeoff,” Adel Javanmard and Mohammad Mehrabi develop a theory to show that when the data enjoys low-dimensional structure, then it is possible to train models that are nearly optimal with respect to both, the standard and robust accuracies.more » « less
An official website of the United States government

