skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Optimal Quantity of Scheduling Model for Mass Customization-Based Additive Manufacturing
The purpose of this study is to optimize production planning decisions in additive manufacturing for mass customization (AMMC) systems in which customer demands are highly variable. The main research question is to find the optimal quantity of products for scheduling, the economic scheduling quantity (ESQ). If the scheduling quantity is too large, the time to collect customer orders increases and a penalty cost occurs due to the delay in responding to consumer demands. On the other hand, if the scheduling quantity is too small, the number of parts per jobs decreases and parts are not efficiently packed within a workspace and consequently the build process cost increases. An experiment is provided for the case of stereolithography (SLA) and 2D packing to demonstrate how the build time per part increases as the scheduling quantity decreases. In addition, a mathematical framework based on ESQ is provided to evaluate the production capacity in satisfying the market demand.  more » « less
Award ID(s):
1727190
PAR ID:
10110901
Author(s) / Creator(s):
;
Date Published:
Journal Name:
the ASME 2019 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE, Aug 18-21, 2019, Anaheim, CA.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gentry, E; Ju, F; Liu, X (Ed.)
    This research investigates optimal pricing strategies in a service-providing queueing system where customers may renege before service completion. Prices are quoted upon customer arrivals and the incoming customers join the system if their willingness to pay exceeds the quoted price. While waiting in line or during service, customers may get impatient and leave without service, incurring an abandonment cost. There is also a per-unit time per-customer holding cost. Our objective is to maximize the long-run average profit through optimal pricing policies. We model the problem as a Markov decision process and identify the optimal pricing using policy iteration. We also study the structure of the optimal pricing policy. Furthermore, we show that under mild assumptions, the optimal price increases as the number of customers in the system increases. When those assumptions do not hold, optimal price decreases and then increases as the number of customers in the system grows. 
    more » « less
  2. Gentry, E; Ju, F; Liu, X (Ed.)
    This research investigates optimal pricing strategies in a service-providing queueing system where customers may renege before service completion. Prices are quoted upon customer arrivals and the incoming customers join the system if their willingness to pay exceeds the quoted price. While waiting in line or during service, customers may get impatient and leave without service, incurring an abandonment cost. There is also a per-unit time per-customer holding cost. Our objective is to maximize the long-run average profit through optimal pricing policies. We model the problem as a Markov decision process and identify the optimal pricing using policy iteration. We also study the structure of the optimal pricing policy. Furthermore, we show that under mild assumptions, the optimal price increases as the number of customers in the system increases. When those assumptions do not hold, optimal price decreases and then increases as the number of customers in the system grows. 
    more » « less
  3. The efficient production planning of Additively Manufactured (AM) parts is a key point for industry-scale adoption of AM. This study develops an AM-based production plan for the case of manufacturing a significant number of parts with different shapes and sizes by multiple machines with the ultimate purpose of reducing the cycle time. The proposed AM-based production planning includes three main steps: (1) determination of build orientation; (2) 2D packing of parts within the limited workspace of AM machines; and (3) scheduling parts on multiple AM machines. For making decision about build orientation, two main policies are considered: (1) laying policy in which the focus is on reducing the height of parts; and (2) standing policy which aims at minimizing the projection area on the tray to reduce the number of jobs. A heuristic algorithm is suggested to solve 2D packing and scheduling problems. A numerical example is conducted to identify which policy is more preferred in terms of cycle time. As a result, the standing policy is more preferred than the laying policy as the number of parts increases. In the case of testing 3,000 parts, the cycle time of standing policy is about 6% shorter than laying policy. 
    more » « less
  4. In this paper, we consider an integrated vehicle routing and service scheduling problem for serving customers in distributed locations who need pick-up, drop-off, or delivery services. We take into account the random trip time, nonnegligible service time, and possible customer cancellations, under which an ill-designed schedule may lead to undesirable vehicle idleness and customer waiting. We build a stochastic mixed-integer program to minimize the operational cost plus expected penalty cost of customers’ waiting time, vehicles’ idleness, and overtime. Furthermore, to handle real-time arrived service requests, we develop K-means clustering-based algorithms to dynamically update planned routes and schedules. The algorithms assign customers to vehicles based on similarities and then plan schedules on each vehicle separately. We conduct numerical experiments based on diverse instances generated from census data and data from the Ford Motor Company’s GoRide service, to evaluate result sensitivity and to compare the in-sample and out-of-sample performance of different approaches. Managerial insights are provided using numerical results based on different parameter choices and uncertainty settings. 
    more » « less
  5. The study investigates the impact of build orientation policies on the production time in additive manufacturing (AM) for mass customisation business models. Two main orientation policies are considered: (1) Laying Policy (LP) that focuses on reducing the height of parts; and (2) Standing Policy (SP) that aims to minimise the projection base plane of parts to reduce the number of jobs. While LP minimises the build time per job since parts have low height, it could increase the total completion time as the number of parts increases. On the other hand, SP takes longer build time per job due to the high height of parts, where it could lead to a fewer number of jobs. Several numerical experiments have been conducted based on Stereolithography (SLA). The results show that, when the number of parts is experimentally about 40, SP could be more preferred than LP for minimising the completion time where the shape tendency of parts is likely to affect the extent of preference for the policies. When 40 parts with long and flat shape are considered, SP reduces the completion time by 15.7% over the default policy, the initial orientation of a part, while LP reduces by only 6.6%. 
    more » « less