Queueing models that are used to capture various service settings typically assume that customers require a single unit of resource (server) to be processed. However, there are many service settings where such an assumption may fail to capture the heterogeneity in resource requirements of different customers. We propose a multiserver queueing model with multiple customer classes in which customers from different classes may require different amounts of resources to be served. We study the optimal scheduling policy for such systems. To balance holding costs, service rates, resource requirement, and priority-induced idleness, we develop an index-based policy that we refer to as the idle-avoid [Formula: see text] rule. For a two-class two-server model, where policy-induced idleness can have a big impact on system performance, we characterize cases where the idle-avoid [Formula: see text] rule is optimal. In other cases, we establish a uniform performance bound on the amount of suboptimality incurred by the idle-avoid [Formula: see text] rule. For general multiclass multiserver queues, we establish the asymptotic optimality of the idle-avoid [Formula: see text] rule in the many-server regime. For long-time horizons, we show that the idle-avoid [Formula: see text] is throughput optimal. Our theoretical results, along with numerical experiments, provide support for the good and robust performance of the proposed policy. 
                        more » 
                        « less   
                    
                            
                            Integrated Vehicle Routing and Service Scheduling Under Time and Cancellation Uncertainties with Application in Nonemergency Medical Transportation
                        
                    
    
            In this paper, we consider an integrated vehicle routing and service scheduling problem for serving customers in distributed locations who need pick-up, drop-off, or delivery services. We take into account the random trip time, nonnegligible service time, and possible customer cancellations, under which an ill-designed schedule may lead to undesirable vehicle idleness and customer waiting. We build a stochastic mixed-integer program to minimize the operational cost plus expected penalty cost of customers’ waiting time, vehicles’ idleness, and overtime. Furthermore, to handle real-time arrived service requests, we develop K-means clustering-based algorithms to dynamically update planned routes and schedules. The algorithms assign customers to vehicles based on similarities and then plan schedules on each vehicle separately. We conduct numerical experiments based on diverse instances generated from census data and data from the Ford Motor Company’s GoRide service, to evaluate result sensitivity and to compare the in-sample and out-of-sample performance of different approaches. Managerial insights are provided using numerical results based on different parameter choices and uncertainty settings. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1727618
- PAR ID:
- 10318934
- Date Published:
- Journal Name:
- Service Science
- Volume:
- 13
- Issue:
- 3
- ISSN:
- 2164-3962
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Service systems are typically limited resource environments where scarce capacity is reserved for the most urgent customers. However, there has been a growing interest in the use of proactive service when a less urgent customer may become urgent while waiting. On one hand, providing service for customers when they are less urgent could mean that fewer resources are needed to fulfill their service requirement. On the other hand, using limited capacity for customers who may never need the service in the future takes the capacity away from other more urgent customers who need it now. To understand this tension, we propose a multiserver queueing model with two customer classes: moderate and urgent. We allow customers to transition classes while waiting. In this setting, we characterize how moderate and urgent customers should be prioritized for service when proactive service for moderate customers is an option. We identify an index, the modified [Formula: see text]-index, which plays an important role in determining the optimal scheduling policy. This index lends itself to an intuitive interpretation of how to balance holding costs, service times, abandonments, and transitions between customer classes. This paper was accepted by David Simchi-Levi, stochastic models and simulation.more » « less
- 
            Gentry, E; Ju, F; Liu, X (Ed.)This research investigates optimal pricing strategies in a service-providing queueing system where customers may renege before service completion. Prices are quoted upon customer arrivals and the incoming customers join the system if their willingness to pay exceeds the quoted price. While waiting in line or during service, customers may get impatient and leave without service, incurring an abandonment cost. There is also a per-unit time per-customer holding cost. Our objective is to maximize the long-run average profit through optimal pricing policies. We model the problem as a Markov decision process and identify the optimal pricing using policy iteration. We also study the structure of the optimal pricing policy. Furthermore, we show that under mild assumptions, the optimal price increases as the number of customers in the system increases. When those assumptions do not hold, optimal price decreases and then increases as the number of customers in the system grows.more » « less
- 
            Gentry, E; Ju, F; Liu, X (Ed.)This research investigates optimal pricing strategies in a service-providing queueing system where customers may renege before service completion. Prices are quoted upon customer arrivals and the incoming customers join the system if their willingness to pay exceeds the quoted price. While waiting in line or during service, customers may get impatient and leave without service, incurring an abandonment cost. There is also a per-unit time per-customer holding cost. Our objective is to maximize the long-run average profit through optimal pricing policies. We model the problem as a Markov decision process and identify the optimal pricing using policy iteration. We also study the structure of the optimal pricing policy. Furthermore, we show that under mild assumptions, the optimal price increases as the number of customers in the system increases. When those assumptions do not hold, optimal price decreases and then increases as the number of customers in the system grows.more » « less
- 
            Drone-based last-mile delivery is an emerging technology that uses drones loaded onto a truck to deliver parcels to customers. In this paper, we introduce a fully automated system for drone-based last-mile delivery through incorporation of autonomous vehicles (AVs). A novel problem called the autonomous vehicle routing problem with drones (A-VRPD) is defined. A-VRPD is to select AVs from a pool of available AVs based on crowd sourcing, assign selected AVs to customer groups, and schedule routes for selected AVs to optimize the total operational cost. We formulate A-VRPD as a Mixed Integer Linear Program (MILP) and propose an optimization framework to solve the problem. A greedy algorithm is also developed to significantly improve the running time for large-scale delivery scenarios. Extensive simulations were conducted taking into account real-world operational costs for different types of AVs, traveled distances calculated considering the real-time traffic conditions using Google Map API, and varying load capacities of AVs. We evaluated the performance in comparison with two different state-of-the-art solutions: an algorithm designed to address the traditional vehicle routing problem with drones (VRP-D), which involves human-operated trucks working in tandem with drones to deliver parcels, and an algorithm for the two echelon vehicle routing problem (2E-VRP), wherein parcels are first transported to satellite locations and subsequently delivered from those satellites to the customers. The results indicate a substantial increase in profits for both the delivery company and vehicle owners compared with the state-of-the-art algorithms.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    