Nonnative pests often cause cascading ecological impacts, leading to detrimental socioeconomic consequences; however, how plant diversity may influence insect and disease invasions remains unclear. High species diversity in host communities may promote pest invasions by providing more niches (i.e., facilitation), but it can also diminish invasion success because low host dominance may make it more difficult for pests to establish (i.e., dilution). Most studies to date have focused on small-scale, experimental, or individual pest/disease species, while large-scale empirical studies, especially in natural ecosystems, are extremely rare. Using subcontinental-level data, we examined the role of tree diversity on pest invasion across the conterminous United States and found that the tree-pest diversity relationships are hump-shaped. Pest diversity increases with tree diversity at low tree diversity (because of facilitation or amplification) and is reduced at higher tree diversity (as a result of dilution). Thus, tree diversity likely regulates forest pest invasion through both facilitation and dilution that operate simultaneously, but their relative strengths vary with overall diversity. Our findings suggest the role of native species diversity in regulating nonnative pest invasions.
more »
« less
Biomass losses resulting from insect and disease invasions in US forests
Worldwide, forests are increasingly affected by nonnative insects and diseases, some of which cause substantial tree mortality. Forests in the United States have been invaded by a particularly large number (>450) of tree-feeding pest species. While information exists about the ecological impacts of certain pests, region-wide assessments of the composite ecosystem impacts of all species are limited. Here we analyze 92,978 forest plots distributed across the conterminous United States to estimate biomass loss associated with elevated mortality rates caused by the 15 most damaging nonnative forest pests. We find that these species combined caused an additional (i.e., above background levels) tree mortality rate of 5.53 TgC per year. Compensation, in the form of increased growth and recruitment of nonhost species, was not detectable when measured across entire invaded ranges but does occur several decades following pest invasions. In addition, 41.1% of the total live forest biomass in the conterminous United States is at risk of future loss from these 15 pests. These results indicate that forest pest invasions, driven primarily by globalization, represent a huge risk to US forests and have significant impacts on carbon dynamics.
more »
« less
- Award ID(s):
- 1638702
- PAR ID:
- 10110929
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- 201820601
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Diseases and insects, particularly those that are non-native and invasive, arguably pose the most destructive threat to North American forests. Currently, both exotic and native insects and diseases are producing extensive ecological damage and economic impacts. As part of an effort to identify United States tree species and forests most vulnerable to these epidemics, we compiled a list of the most serious insect and disease threats for 419 native tree species and assigned a severity rating for each of the 1378 combinations between mature tree hosts and 339 distinct insect and disease agents. We then joined this list with data from a spatially unbiased and nationally consistent forest inventory to assess the potential ecological impacts of insect and disease infestations. Specifically, potential host species mortality for each host/agent combination was used to weight species importance values on approximately 132,000 Forest Inventory and Analysis (FIA) plots across the conterminous 48 United States. When summed on each plot, these weighted importance values represent an estimate of the proportion of the plot’s existing importance value at risk of being lost. These plot estimates were then used to identify statistically significant geographic hotspots and coldspots and of potential forest impacts associated with insects and diseases in total, and for different agent types. In general, the potential impacts of insects and diseases were greater in the West, where there are both fewer agents and less diverse forests. The impact of non-native invasive agents, however, was potentially greater in the East. Indeed, the impacts of current exotic pests could be greatly magnified across much of the Eastern United States if these agents are able to reach the entirety of their hosts’ ranges. Both the list of agent/host severities and the spatially explicit results can inform species-level vulnerability assessments and broad-scale forest sustainability reporting efforts, and should provide valuable information for decision-makers who need to determine which tree species and locations to target for monitoring efforts and pro-active management activities.more » « less
-
The influences of human and physical factors on species invasions have been extensively examined by ecologists across many regions. However, how habitat fragmentation per se may affect forest insect and disease invasion has not been well studied, especially the related patterns over regional or subcontinental scales. Here, using national survey data on forest pest richness and fragmentation data across United States forest ecosystems, we examine how forest fragmentation and edge types (neighboring land cover) may affect pest richness at the county level. Our results show that habitat fragmentation and edge types both affected pest richness. In general, specialist insects and pathogens were more sensitive to fragmentation and edge types than generalists, while pathogens were much less sensitive to fragmentation and edge types than insect pests. Most importantly, the developed land edge type contributed the most to the richness of nonnative insects and diseases, whether measured by the combination of all pest species or by separate guilds or species groups (i.e., generalists vs. specialists, insects vs. pathogens). This observation may largely reflect anthropogenic effects, including propagule pressure associated with human activities. These results shed new insights into the patterns of forest pest invasions, and it may have significant implications for forest restoration and management.more » « less
-
Abstract Forests are currently a substantial carbon sink globally. Many climate change mitigation strategies leverage forest preservation and expansion, but rely on forests storing carbon for decades to centuries. Yet climate‐driven disturbances pose critical risks to the long‐term stability of forest carbon. We quantify the climate drivers that influence wildfire and climate stress‐driven tree mortality, including a separate insect‐driven tree mortality, for the contiguous United States for current (1984–2018) and project these future disturbance risks over the 21st century. We find that current risks are widespread and projected to increase across different emissions scenarios by a factor of >4 for fire and >1.3 for climate‐stress mortality. These forest disturbance risks highlight pervasive climate‐sensitive disturbance impacts on US forests and raise questions about the risk management approach taken by forest carbon offset policies. Our results provide US‐wide risk maps of key climate‐sensitive disturbances for improving carbon cycle modeling, conservation and climate policy.more » « less
-
One promising approach to mitigate the negative impacts of insect pests in forests is to adapt forestry practices to create ecosystems that are more resistant and resilient to biotic disturbances. At the stand scale, local stand management practices often cause idiosyncratic effects on forest pests depending on the environmental context and the focal pest species. However, increasing tree diversity appears to be a general strategy for reducing pest damage across several forest types. At the landscape scale, increasing forest heterogeneity (e.g., intermixing different forest types and/or age classes) represents a promising frontier for improving forest resistance and resilience and for avoiding large-scale outbreaks. In addition to their greater resilience, heterogeneous forest landscapes frequently support a wide range of ecosystem functions and services. A challenge will be to develop cooperation and coordination among multiple actors at spatial scales that transcend historical practices in forest management.more » « less
An official website of the United States government

