skip to main content


Title: A Subcontinental Analysis of Forest Fragmentation Effects on Insect and Disease Invasion
The influences of human and physical factors on species invasions have been extensively examined by ecologists across many regions. However, how habitat fragmentation per se may affect forest insect and disease invasion has not been well studied, especially the related patterns over regional or subcontinental scales. Here, using national survey data on forest pest richness and fragmentation data across United States forest ecosystems, we examine how forest fragmentation and edge types (neighboring land cover) may affect pest richness at the county level. Our results show that habitat fragmentation and edge types both affected pest richness. In general, specialist insects and pathogens were more sensitive to fragmentation and edge types than generalists, while pathogens were much less sensitive to fragmentation and edge types than insect pests. Most importantly, the developed land edge type contributed the most to the richness of nonnative insects and diseases, whether measured by the combination of all pest species or by separate guilds or species groups (i.e., generalists vs. specialists, insects vs. pathogens). This observation may largely reflect anthropogenic effects, including propagule pressure associated with human activities. These results shed new insights into the patterns of forest pest invasions, and it may have significant implications for forest restoration and management.  more » « less
Award ID(s):
1638702
NSF-PAR ID:
10110983
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Forests
Volume:
9
Issue:
12
ISSN:
1999-4907
Page Range / eLocation ID:
744
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    Establishments of non‐native forest pests (insects and pathogens) continue to increase worldwide with growing numbers of introductions and changes in invasion pathways. Quantifying spatio‐temporal patterns in establishment locations and subsequent invasion dynamics can provide insight into the underlying mechanisms driving invasions and assist biosecurity agencies with prioritizing areas for proactive surveillance and management.

    Location

    United States of America.

    Time period

    1794–2018.

    Major taxa studied

    Insecta, plant pathogens.

    Methods

    Using locations of first discovery and county‐level occurrence data for 101 non‐native pests across the contiguous USA, we (a) quantified spatial patterns in discovery points and county‐level species richness with spatial point process models and spatial hotspot analyses, respectively, and (b) identified potential proxies for propagule pressure (e.g., human population density) associated with these observed patterns.

    Results

    Discovery points were highly aggregated in space and located in areas with high densities of ports and roads. Although concentrated in the north‐eastern USA, discovery points also occurred farther west and became less aggregated as time progressed. Invasion hotspots were more common in the north‐east. Geographic patterns of discovery points and hotspots varied substantially among pest origins (i.e., global region of pests’ native ranges) and pest feeding guilds. Significant variation in invasion richness was attributed to the patterns of first discovery locations. Data and shapefiles comprising analyses are provided.

    Main conclusions

    Use of spatial point pattern analyses provided a quantitative characterization of the central role of human activities in establishment of non‐native pests. Moreover, the decreased aggregation of discovery points through time suggests that invasion pathways to certain areas in the USA have either been created or intensified by human activities. Overall, our results suggest that spatio‐temporal variability in the intensity of invasion pathways has resulted in marked geographic patterns of establishment and contributed to current macroscale patterns of pest invasion in the USA.

     
    more » « less
  2. Background Landscape composition is known to affect both beneficial insect and pest communities on crop fields. Landscape composition therefore can impact ecosystem (dis)services provided by insects to crops. Though landscape effects on ecosystem service providers have been studied in large-scale agriculture in temperate regions, there is a lack of representation of tropical smallholder agriculture within this field of study, especially in sub-Sahara Africa. Legume crops can provide important food security and soil improvement benefits to vulnerable agriculturalists. However, legumes are dependent on pollinating insects, particularly bees (Hymenoptera: Apiformes) for production and are vulnerable to pests. We selected 10 pigeon pea (Fabaceae: Cajunus cajan (L.)) fields in Malawi with varying proportions of semi-natural habitat and agricultural area within a 1 km radius to study: (1) how the proportion of semi-natural habitat and agricultural area affects the abundance and richness of bees and abundance of florivorous blister beetles (Coleoptera: Melloidae ), (2) if the proportion of flowers damaged and fruit set difference between open and bagged flowers are correlated with the proportion of semi-natural habitat or agricultural area and (3) if pigeon pea fruit set difference between open and bagged flowers in these landscapes was constrained by pest damage or improved by bee visitation. Methods We performed three, ten-minute, 15 m, transects per field to assess blister beetle abundance and bee abundance and richness. Bees were captured and identified to (morpho)species. We assessed the proportion of flowers damaged by beetles during the flowering period. We performed a pollinator and pest exclusion experiment on 15 plants per field to assess whether fruit set was pollinator limited or constrained by pests. Results In our study, bee abundance was higher in areas with proportionally more agricultural area surrounding the fields. This effect was mostly driven by an increase in honeybees. Bee richness and beetle abundances were not affected by landscape characteristics, nor was flower damage or fruit set difference between bagged and open flowers. We did not observe a positive effect of bee density or richness, nor a negative effect of florivory, on fruit set difference. Discussion In our study area, pigeon pea flowers relatively late—well into the dry season. This could explain why we observe higher densities of bees in areas dominated by agriculture rather than in areas with more semi-natural habitat where resources for bees during this time of the year are scarce. Therefore, late flowering legumes may be an important food resource for bees during a period of scarcity in the seasonal tropics. The differences in patterns between our study and those conducted in temperate regions highlight the need for landscape-scale studies in areas outside the temperate region. 
    more » « less
  3. Abstract

    Approximately 20% of the Brazilian Amazon has now been deforested, and the Amazon is currently experiencing the highest rates of deforestation in a decade, leading to large‐scale land‐use changes. Roads have consistently been implicated as drivers of ongoing Amazon deforestation and may act as corridors to facilitate species invasions. Long‐term data, however, are necessary to determine how ecological succession alters avian communities following deforestation and whether established roads lead to a constant influx of new species.

    We used data across nearly 40 years from a large‐scale deforestation experiment in the central Amazon to examine the avian colonization process in a spatial and temporal framework, considering the role that roads may play in facilitating colonization.

    Since 1979, 139 species that are not part of the original forest avifauna have been recorded, including more secondary forest species than expected based on the regional species pool. Among the 35 species considered to have colonized and become established, a disproportionate number were secondary forest birds (63%), almost all of which first appeared during the 1980s. These new residents comprise about 13% of the current community of permanent residents.

    Widespread generalists associated with secondary forest colonized quickly following deforestation, with few new species added after the first decade, despite a stable road connection. Few species associated with riverine forest or specialized habitats colonized, despite road connection to their preferred source habitat. Colonizing species remained restricted to anthropogenic habitats and did not infiltrate old‐growth forests nor displace forest birds.

    Deforestation and expansion of road networks intoterra firmerainforest will continue to create degraded anthropogenic habitat. Even so, the initial pulse of colonization by nonprimary forest bird species was not the beginning of a protracted series of invasions in this study, and the process appears to be reversible by forest succession.

     
    more » « less
  4. Abstract

    Landscape structure, which can be manipulated in agricultural landscapes through crop rotation and modification of field edge habitats, can have important effects on connectivity among local populations of insects. Though crop rotation is known to influence the abundance of Colorado potato beetle (CPB;Leptinotarsa decemlineataSay) in potato (Solanum tuberosumL.) fields each year, whether crop rotation and intervening edge habitat also affect genetic variation among populations is unknown. We investigated the role of landscape configuration and composition in shaping patterns of genetic variation in CPB populations in the Columbia Basin of Oregon and Washington, and the Central Sands of Wisconsin, USA. We compared landscape structure and its potential suitability for dispersal, tested for effects of specific land cover types on genetic differentiation among CPB populations, and examined the relationship between crop rotation distances and genetic diversity. We found higher genetic differentiation between populations separated by low potato land cover, and lower genetic diversity in populations occupying areas with greater crop rotation distances. Importantly, these relationships were only observed in the Columbia Basin, and no other land cover types influenced CPB genetic variation. The lack of signal in Wisconsin may arise as a consequence of greater effective population size and less pronounced genetic drift. Our results suggest that the degree to which host plant land cover connectivity affects CPB genetic variation depends on population size and that power to detect landscape effects on genetic differentiation might be reduced in agricultural insect pest systems.

     
    more » « less
  5. Abstract

    Human‐driven land use change can fundamentally alter ecological communities, especially the diversity and abundance of large‐bodied predators. Yet, despite the important roles large‐bodied predators play in structuring communities through feeding, there have been only a few investigations of how the feeding patterns of large‐bodied predators change in human‐dominated landscapes. One group of large‐bodied predators that has been largely overlooked in the context of land use change is the crocodilians. To help fill these gaps, we studied the feeding patterns of juvenile American alligators (Alligator mississippiensis) on neighboring barrier islands on the southeast coast of Georgia, USA. Jekyll Island has multiple golf courses and substantial amounts of human activity, while Sapelo Island does not have any golf courses and a much smaller amount of human activity. We found that juvenile alligator populations on both islands ate the same types of prey but in vastly different quantities. Sapelo Island alligators primarily consumed crustaceans while alligators that lived on Jekyll Island's golf courses ate mostly insects/arachnids. Furthermore, the Jekyll Island alligators exhibited a much more generalist feeding pattern (individuals mostly ate the same types of prey in the same quantities) than the more specialized Sapelo Island alligators (diets were more varied across individuals). The most likely explanation for our results is that alligators living on golf courses have different habitat use patterns and have access to different prey communities relative to alligators in more natural habitats. Thus, land use change can strongly alter the feeding patterns of large‐bodied predators and, as a result, may affect their body condition, exposure to human‐made chemicals, and role within ecological communities.

     
    more » « less