skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bayesian Sequential Design Based on Dual Objectives for Accelerated Life Tests
Traditional accelerated life test plans are typically based on optimizing the C-optimality for minimizing the variance of an interested quantile of the lifetime distribution. These methods often rely on some specified planning values for the model parameters, which are usually unknown prior to the actual tests. The ambiguity of the specified parameters can lead to suboptimal designs for optimizing the reliability performance of interest. In this paper, we propose a sequential design strategy for life test plans based on considering dual objectives. In the early stage of the sequential experiment, we suggest allocating more design locations based on optimizing the D-optimality to quickly gain precision in the estimated model parameters. In the later stage of the experiment, we can allocate more observations based on optimizing the C-optimality to maximize the precision of the estimated quantile of the lifetime distribution. We compare the proposed sequential design strategy with existing test plans considering only a single criterion and illustrate the new method with an example on the fatigue testing of polymer composites.  more » « less
Award ID(s):
1565314 1838271
PAR ID:
10110947
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Statistical Quality Technologies
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Past work on optimizing fabrication plans given a carpentry design can provide Pareto-optimal plans trading off between material waste, fabrication time, precision, and other considerations. However, when developing fabrication plans, experts rarely restrict to a single design , instead considering families of design variations , sometimes adjusting designs to simplify fabrication. Jointly exploring the design and fabrication plan spaces for each design is intractable using current techniques. We present a new approach to jointly optimize design and fabrication plans for carpentered objects. To make this bi-level optimization tractable, we adapt recent work from program synthesis based on equality graphs (e-graphs), which encode sets of equivalent programs. Our insight is that subproblems within our bi-level problem share significant substructures. By representing both designs and fabrication plans in a new bag of parts (BOP) e-graph, we amortize the cost of optimizing design components shared among multiple candidates. Even using BOP e-graphs, the optimization space grows quickly in practice. Hence, we also show how a feedback-guided search strategy dubbed Iterative Contraction and Expansion on E-graphs (ICEE) can keep the size of the e-graph manageable and direct the search towards promising candidates. We illustrate the advantages of our pipeline through examples from the carpentry domain. 
    more » « less
  2. null (Ed.)
    RNA sequencing data have been abundantly generated in biomedical research for biomarker discovery and other studies. Such data at the exon level are usually heavily tailed and correlated. Conventional statistical tests based on the mean or median difference for differential expression likely suffer from low power when the between-group difference occurs mostly in the upper or lower tail of the distribution of gene expression. We propose a tail-based test to make comparisons between groups in terms of a specific distribution area rather than a single location. The proposed test, which is derived from quantile regression, adjusts for covariates and accounts for within-sample dependence among the exons through a specified correlation structure. Through Monte Carlo simulation studies, we show that the proposed test is generally more powerful and robust in detecting differential expression than commonly used tests based on the mean or a single quantile. An application to TCGA lung adenocarcinoma data demonstrates the promise of the proposed method in terms of biomarker discovery. 
    more » « less
  3. null (Ed.)
    We present a method for learning multi-stage tasks from demonstrations by learning the logical structure and atomic propositions of a consistent linear temporal logic (LTL) formula. The learner is given successful but potentially suboptimal demonstrations, where the demonstrator is optimizing a cost function while satisfying the LTL formula, and the cost function is uncertain to the learner. Our algorithm uses the Karush-Kuhn-Tucker (KKT) optimality conditions of the demonstrations together with a counterexample-guided falsification strategy to learn the atomic proposition parameters and logical structure of the LTL formula, respectively. We provide theoretical guarantees on the conservativeness of the recovered atomic proposition sets,as well as completeness in the search for finding an LTL formula consistent with the demonstrations. We evaluate our method on high-dimensional nonlinear systems by learning LTL formulas explaining multi-stage tasks on 7-DOF arm and quadrotor systems and show that it outperforms competing methods for learning LTL formulas from positive examples. 
    more » « less
  4. It has been recently shown that an additional therapeutic gain may be achieved if a radiotherapy plan is altered over the treatment course using a new treatment paradigm referred to in the literature as spatiotemporal fractionation. Because of the nonconvex and large-scale nature of the corresponding treatment plan optimization problem, the extent of the potential therapeutic gain that may be achieved from spatiotemporal fractionation has been investigated using stylized cancer cases to circumvent the arising computational challenges. This research aims at developing scalable optimization methods to obtain high-quality spatiotemporally fractionated plans with optimality bounds for clinical cancer cases. In particular, the treatment-planning problem is formulated as a quadratically constrained quadratic program and is solved to local optimality using a constraint-generation approach, in which each subproblem is solved using sequential linear/quadratic programming methods. To obtain optimality bounds, cutting-plane and column-generation methods are combined to solve the Lagrangian relaxation of the formulation. The performance of the developed methods are tested on deidentified clinical liver and prostate cancer cases. Results show that the proposed method is capable of achieving local-optimal spatiotemporally fractionated plans with an optimality gap of around 10%–12% for cancer cases tested in this study. Summary of Contribution: The design of spatiotemporally fractionated radiotherapy plans for clinical cancer cases gives rise to a class of nonconvex and large-scale quadratically constrained quadratic programming (QCQP) problems, the solution of which requires the development of efficient models and solution methods. To address the computational challenges posed by the large-scale and nonconvex nature of the problem, we employ large-scale optimization techniques to develop scalable solution methods that find local-optimal solutions along with optimality bounds. We test the performance of the proposed methods on deidentified clinical cancer cases. The proposed methods in this study can, in principle, be applied to solve other QCQP formulations, which commonly arise in several application domains, including graph theory, power systems, and signal processing. 
    more » « less
  5. Abstract The assumption of normality is usually tied to the design and analysis of an experimental study. However, when dealing with lifetime testing and censoring at fixed time intervals, we can no longer assume that the outcomes will be normally distributed. This generally requires the use of optimal design techniques to construct the test plan for specific distribution of interest. Optimal designs in this situation depend on the parameters of the distribution, which are generally unknown a priori. A Bayesian approach can be used by placing a prior distribution on the parameters, thereby leading to an appropriate selection of experimental design. This, along with the model and number of predictors, can be used to derive the D‐optimal design for an allowed number of experimental runs. This paper explores using this Bayesian approach on various lifetime regression models to select appropriate D‐optimal designs in regular and irregular design regions. 
    more » « less