skip to main content

Title: Exposure of Protected and Unprotected Forest to Plant Invasions in the Eastern United States
Research Highlights: We demonstrate a macroscale framework combining an invasibility model with forest inventory data, and evaluate regional forest exposure to harmful invasive plants under different types of forest protection. Background and Objectives: Protected areas are a fundamental component of natural resource conservation. The exposure of protected forests to invasive plants can impede achievement of conservation goals, and the effectiveness of protection for limiting forest invasions is uncertain. We conducted a macroscale assessment of the exposure of protected and unprotected forests to harmful invasive plants in the eastern United States. Materials and Methods: Invasibility (the probability that a forest site has been invaded) was estimated for 82,506 inventory plots from site and landscape attributes. The invaded forest area was estimated by using the inventory sample design to scale up plot invasibility estimates to all forest area. We compared the invasibility and the invaded forest area of seven categories of protection with that of de facto protected (publicly owned) forest and unprotected forest in 13 ecological provinces. Results: We estimate approximately 51% of the total forest area has been exposed to harmful invasive plants, including 30% of the protected forest, 38% of the de facto protected forest, and 56% of the more » unprotected forest. Based on cumulative invasibility, the relative exposure of protection categories depended on the assumed invasibility threshold. Based on the invaded forest area, the five least-exposed protection categories were wilderness area (13% invaded), national park (18%), sustainable use (26%), nature reserve (31%), and de facto protected Federal land (36%). Of the total uninvaded forest area, only 15% was protected and 14% had de facto protection. Conclusions: Any protection is better than none, and public ownership alone is as effective as some types of formal protection. Since most of the remaining uninvaded forest area is unprotected, landscape-level management strategies will provide the most opportunities to conserve it. « less
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Maritime forests are threatened by sea-level rise, storm surge and encroachment of salt-tolerant species. On barrier islands, these forested communities must withstand the full force of tropical storms, hurricanes and nor’easters while the impact is reduced for mainland forests protected by barrier islands. Geographic position may account for differences in maritime forest resilience to disturbance. In this study, we quantify two geographically distinct maritime forests protected by dunes on Virginia’s Eastern Shore (i.e., mainland and barrier island) at two time points (15 and 21 years apart, respectively) to determine whether the trajectory is successional or presenting evidence of disassembly with sea-level rise and storm exposure. We hypothesize that due to position on the landscape, forest disassembly will be higher on the barrier island than mainland as evidenced by reduction in tree basal area and decreased species richness. Rate of relative sea-level rise in the region was 5.9 ± 0.7 mm yr−1 based on monthly mean sea-level data from 1975 to 2017. Savage Neck Dunes Natural Area Preserve maritime forest was surveyed using the point quarter method in 2003 and 2018. Parramore Island maritime forest was surveyed in 1997 using 32 m diameter circular plots. As the island has been erodingmore »over the past two decades, 2016 Landsat imagery was used to identify remaining forested plots prior to resurveying. In 2018, only plots that remained forested were resurveyed. Lidar was used to quantify elevation of each point/plot surveyed in 2018. Plot elevation at Savage Neck was 1.93 ± 0.02 m above sea level, whereas at Parramore Island, elevation was lower at 1.04 ± 0.08 m. Mainland dominant species, Acer rubrum, Pinus taeda, and Liquidambar styraciflua, remained dominant over the study period, with a 14% reduction in the total number of individuals recorded. Basal area increased by 11%. Conversely, on Parramore Island, 33% of the former forested plots converted to grassland and 33% were lost to erosion and occur as ghost forest on the shore or were lost to the ocean. Of the remaining forested plots surveyed in 2018, dominance switched from Persea palustris and Juniperus virginiana to the shrub Morella cerifera. Only 46% of trees/shrubs remained and basal area was reduced by 84%. Shrub basal area accounted for 66% of the total recorded in 2018. There are alternative paths to maritime forest trajectory which differ for barrier island and mainland. Geographic position relative to disturbance and elevation likely explain the changes in forest community composition over the timeframes studied. Protected mainland forest at Savage Neck occurs at higher mean elevation and indicates natural succession to larger and fewer individuals, with little change in mixed hardwood-pine dominance. The fronting barrier island maritime forest on Parramore Island has undergone rapid change in 21 years, with complete loss of forested communities to ocean or conversion to mesic grassland. Of the forests remaining, dominant evergreen trees are now being replaced with the expanding evergreen shrub, Morella cerifera. Loss of biomass and basal area has been documented in other low elevation coastal forests. Our results indicate that an intermediate shrub state may precede complete loss of woody communities in some coastal communities, providing an alternative mechanism of resilience.« less
  2. Abstract

    On exposure to stressors, energy is diverted from non-urgent functions towards those important for immediate survival. The degree and nature of reallocation may be affected by the evolutionary history of the animal. The eastern fence lizard (Sceloporus undulatus) coexists in parts of its range with invasive fire ants (Solenopsis invicta), which attack and wound lizards and elevate stress-relevant hormones (corticosterone), whereas other populations have never been exposed to fire ants. We examined how a history of fire ant invasion affected the immune response in female lizards after exposure to exogenous corticosterone (mimicking exposure to a stressor) during gestation (dosing regimens differed among corticosterone-exposed lizards owing to the constraints of the original studies, but we found no evidence that this affected the outcome of the present study). A history of exposure to predatory stressors (fire ants) and corticosterone treatment affected cell-mediated immunity. Lizards from fire ant-invaded sites had a reduced immune response compared with those from uninvaded sites. Corticosterone treatment had no effect on the immune response of lizards from invaded sites but reduced the immune response of lizards from uninvaded sites. This suggests that an evolutionary history of exposure to wounding alters the immune response to corticosterone. Future workmore »on how the immune system responds to environmental threats will be informative for the prediction and management of these threats.

    « less
  3. Abstract The impacts of invasive species on biodiversity may be mitigated or exacerbated by abiotic environmental changes. Invasive plants can restructure soil fungal communities with important implications for native biodiversity and nutrient cycling, yet fungal responses to invasion may depend on numerous anthropogenic stressors. In this study, we experimentally invaded a long-term soil warming and simulated nitrogen deposition experiment with the widespread invasive plant Alliaria petiolata (garlic mustard) and tested the responses of soil fungal communities to invasion, abiotic factors, and their interaction. We focused on the phytotoxic garlic mustard because it suppresses native mycorrhizae across forests of North America. We found that invasion in combination with warming, but not under ambient conditions or elevated nitrogen, significantly reduced soil fungal biomass and ectomycorrhizal relative abundances and increased relative abundances of general soil saprotrophs and fungal genes encoding for hydrolytic enzymes. These results suggest that warming potentially exacerbates fungal responses to plant invasion. Soils collected from uninvaded and invaded plots across eight forests spanning a 4 °C temperature gradient further demonstrated that the magnitude of fungal responses to invasion was positively correlated with mean annual temperature. Our study is one of the first empirical tests to show that the impacts of invasionmore »on fungal communities depends on additional anthropogenic pressures and were greater in concert with warming than under elevated nitrogen or ambient conditions.« less
  4. Forest insects and pathogens have significant impacts on U.S. forests, annually affecting an area nearly three times that of wildfires and timber harvesting combined. However, coupled with these direct effects of forest insects and pathogens are the indirect impacts through influencing forest management practices, such as harvesting. In an earlier study, we surveyed private woodland owners in the northeastern U.S. and 84% of respondents indicated they intended to harvest in at least one of the presented insect invasion scenarios. This harvest response to insects represents a potentially significant shift in the timing, extent, and species selection of harvesting. Here we used the results from the landowner survey, regional forest inventory data, and characteristics of the emerald ash borer (Species: Agrilus planipennis Fairmaire, 1888) invasion to examine the potential for a rapidly spreading invasive insect to alter harvest regimes and affect regional forest conditions. Our analysis suggests that 25% of the woodland parcels in the Connecticut River Watershed in New England may intend to harvest in response to emerald ash borer. If the emerald ash borer continues to spread at its current rate within the region, and therefore the associated management response occurs in the next decade, this could result inmore »an increase in harvest frequencies, from 2.6% year−1 (historically) to 3.7% year−1 through to approximately 2030. If harvest intensities remain at levels found in remeasured Forest Inventory and Analysis plots, this insect-initiated harvesting would result in the removal of 12%–13% of the total aboveground biomass. Eighty-one percent of the removed biomass would be from species other than ash, creating a forest disturbance that is over twice the magnitude than that created by emerald ash borer alone, with the most valuable co-occurring species most vulnerable to biomass loss.« less
  5. Abstract

    Fragmentation transforms the environment along forest edges. The prevailing narrative, driven by research in tropical systems, suggests that edge environments increase tree mortality and structural degradation resulting in net decreases in ecosystem productivity. We show that, in contrast to tropical systems, temperate forest edges exhibit increased forest growth and biomass with no change in total mortality relative to the forest interior. We analyze >48,000 forest inventory plots across the north-eastern US using a quasi-experimental matching design. At forest edges adjacent to anthropogenic land covers, we report increases of 36.3% and 24.1% in forest growth and biomass, respectively. Inclusion of edge impacts increases estimates of forest productivity by up to 23% in agriculture-dominated areas, 15% in the metropolitan coast, and +2% in the least-fragmented regions. We also quantify forest fragmentation globally, at 30-m resolution, showing that temperate forests contain 52% more edge forest area than tropical forests. Our analyses upend the conventional wisdom of forest edges as less productive than intact forest and call for a reassessment of the conservation value of forest fragments.