skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Linkages between Extreme Precipitation Events in the Central and Eastern United States and Rossby Wave Breaking
Abstract Linkages between extreme precipitation events (EPEs) in the central and eastern United States and synoptic-scale Rossby wave breaking are investigated using 1979–2015 climatologies of EPEs and upper-level potential vorticity (PV) streamers. The investigation focuses on two domains over the central and eastern United States, respectively, and emphasizes widespread EPEs, events exhibiting exceptionally large precipitation volumes. The relative frequency of PV streamers is found to be significantly enhanced relative to climatology immediately upstream of each domain during widespread EPEs. Majorities of the widespread EPEs in the central (~79%) and eastern (~56%) U.S. domains co-occur with a PV streamer positioned immediately upstream. Odds ratios of EPEs for days when a PV streamer occurs upstream of each domain indicate a strong, statistically significant association between EPEs and Rossby wave breaking. The strength of the EPE–Rossby wave breaking linkage, as measured by co-occurrence fractions and odds ratios, tends to increase with increasing EPE precipitation volume, such that the strongest linkage exists for widespread EPEs. Composite analyses reveal that Rossby wave breaking can result in widespread EPEs by establishing a persistent high-amplitude synoptic-scale wave pattern, within which strong poleward water vapor transport and ascent are forced over the EPE region immediately downstream of an elongated upper-level trough. Additional analyses demonstrate that, compared to corresponding null cases, Rossby wave breaking cases resulting in widespread EPEs exhibit a significantly higher-amplitude wave pattern that favors greater poleward transport of moist, conditionally unstable air and stronger ascent over the EPE region.  more » « less
Award ID(s):
1656406
PAR ID:
10111075
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Monthly Weather Review
Volume:
147
Issue:
9
ISSN:
0027-0644
Page Range / eLocation ID:
p. 3327-3349
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Rossby wave breaking (RWB) can be manifested by the irreversible overturning of isentropes on constant potential vorticity (PV) surfaces. Traditionally, the type of breaking is categorized as anticyclonic (AWB) or cyclonic (CWB) and can be identified using the orientation of streamers of high potential temperature (θ) and lowθair on a PV surface. However, an examination of the differences in RWB structure and their associated tropospheric impacts within these types remains unexplored. In this study, AWB and CWB are identified from overturning isentropes on the dynamic tropopause (DT), defined as the 2 potential vorticity unit (PVU; 1 PVU = 10−6K kg−1m2s−1) surface, in the ERA5 dataset during December, January, and February 1979–2019. Self-organizing maps (SOM), a machine learning method, is used to cluster the identified RWB events into archetypal patterns, or “flavors,” for each type. AWB and CWB flavors capture variations in theθminima/maxima of each streamer and the localized meridionalθgradient (∇θ) flanking the streamers. Variations in the magnitude and position of ∇θbetween flavors correspond to a diversity of jet structures leading to differences in vertical motion patterns and troposphere-deep circulations. A subset of flavors of AWB (CWB) events are associated with the development of strong surface high (low) pressure systems and the generation of extreme poleward moisture transport. For CWB, many events occurred in similar geographical regions, but the precipitation and moisture patterns were vastly different between flavors. Our findings suggest that the location, type, and severity of the tropospheric impacts from RWB are strongly dictated by RWB flavor. Significance StatementLarge-scale atmospheric waves ∼15 km above Earth’s surface are responsible for the daily weather patterns that we experience. These waves can undergo wave breaking, a process that is analogous to ocean waves breaking along the seashore. Wave breaking events have been linked to extreme weather impacts at the surface including cold and heat waves, strong low pressure systems, and extreme precipitation events. Machine learning is used to identify and analyze different flavors, or patterns, of wave breaking events that result in differing surface weather impacts. Some flavors are able to generate notable channels of moisture that result in extreme high precipitation events. This is a crucial insight as forecasting of extreme weather events could be improved from this work. 
    more » « less
  2. Abstract Weak but persistent synoptic-scale ascent may play a role in the initiation or maintenance of nocturnal convection over the central United States. An analytical model is used to explore the nocturnal low-level jets (NLLJ) and ascent that develop in an idealized diurnally varying frictional (Ekman) boundary layer in a neutrally stratified barotropic environment when the flow aloft is a zonally propagating Rossby wave. Steady-periodic solutions are obtained of the linearized Reynolds-averaged Boussinesq-approximated equations of motion on a beta plane with an eddy viscosity that is specified to increase abruptly at sunrise and decrease abruptly at sunset. Rayleigh damping terms are used to parameterize momentum loss due to radiation of inertia–gravity waves. The model-predicted vertical velocity is (approximately) proportional to the wavenumber and wave amplitude. There are two main modes of ascent in midlatitudes, an afternoon mode and a nocturnal mode. The latter arises as a gentle but persistent surge induced by the decrease of turbulence at sunset, the same mechanism that triggers inertial oscillations in the Blackadar theory of NLLJs. If the Rayleigh damping terms are omitted, the boundary layer depth becomes infinite at three critical latitudes, and the vertical velocity becomes infinite far above the ground at two of those latitudes. With the damping terms retained, the solution is well behaved. Peak daytime ascent in the model occurs progressively later in the afternoon at more southern locations (in the Northern Hemisphere) until the first (most northern) critical latitude is reached; south of that latitude the nocturnal mode is dominant. 
    more » « less
  3. Abstract The first 2 weeks of December 2021 were exceptionally active for severe convective storms across the central and eastern United States. While previous work has indicated that this was related to the existence of a negative phase of the Pacific–North American pattern, we demonstrate that such a pattern was configured via dynamical linkages between multiple extratropical cyclogenesis events in the western North Pacific, the recurvature of Typhoon Nyatoh, and the subsequent phase evolution of the North Pacific jet. These processes were found to aid in the excitation of Rossby wave packets and the amplification of upper-level flow downstream over the Pacific, ultimately configuring synoptic-scale weather regimes supportive of anomalous high-frequency and high-intensity severe convective weather in the contiguous United States. In addition, abnormally warm Gulf of America/Gulf of Mexico sea surface temperatures, aided by a period of antecedent synoptic-scale subsidence, played a critical role in enhancing convective instability in the surface warm sector. This work underscores the importance of cataloging these events for purposes of examining (and potentially enhancing) predictability. Significance StatementThe first half of December 2021 recorded one of the most active cool-season severe weather periods in the United States, resulting in two billion-dollar convective outbreaks on 10 and 15 December. This study links these extreme events to upstream dynamical processes over the North Pacific, including extratropical cyclogenesis, the recurvature of Typhoon Nyatoh, and the retraction of the North Pacific jet. These processes amplified downstream flow and configured synoptic environments favorable for severe weather across the United States. Additionally, anomalously warm Gulf of America/Gulf of Mexico sea surface temperatures enhanced convective instability. By identifying these key precursors, this work highlights the potential for improved anticipation of extended-range severe weather likelihood—particularly during the cool season—when such events remain rare but highly impactful. 
    more » « less
  4. Abstract Synoptic eddies embedded in a westerly flow undergo downstream developments due to their dispersive nature. This paper examines the finite-amplitude aspects of downstream development with the budget of local wave activity (LWA), including explicit contributions from diabatic heating. LWA captures well individual troughs/ridges and the wave packet, and its column budget affords simplified interpretations. In the LWA framework, (linear) downstream development demonstrated in previous analyses is represented by the LWA advection by the zonal reference flow plus LWA flux induced by the radiation of Rossby waves. In addition, convergence of nonlinear advective LWA flux, baroclinic sources at the lower boundary, meridional redistribution by eddy momentum flux, and diabatic sources and sinks complete the column budget of LWA. When applied to the life cycles of troughs within coherent wave packets in the Southern Hemisphere, the LWA budget reveals that individual troughs grow mainly through downstream development, convergence of nonlinear advective flux by eddies, and diabatic heating. Downstream development and divergence of nonlinear flux also dominate trough decay. Contributions from nonlinear advective eddy flux are large in the presence of a strong ridge either immediately upstream or downstream of the trough. Furthermore, anticyclonic components of advective LWA fluxes associated with the upstream or downstream ridge transfer LWA into or out of the trough. Diabatic contributions are significant when the heating exhibits a tilted vertical structure that gives rise to enhanced vertical gradient in heating. 
    more » « less
  5. Abstract This study investigates the evolution of substorm onset beads into poleward expansion, surge, and streamer formation during the substorm expansion phase. Using optical observations, we infer the transition from near‐Earth instability to the formation of a near‐Earth neutral line (NENL). We found that a thin, faint arc appeared immediately poleward of the onset arc shortly after substorm onset but prior to significant poleward expansion. Beads within the longitudinal extent of this poleward arc expanded poleward more rapidly than those outside this region. The western edge of the poleward‐expanding beads formed the surge, and streamers emanated from the poleward‐expanding arc. Poleward expansion occurred stepwise, with each step associated with a re‐intensification of the poleward arc. Analysis of an event with simultaneous observations from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite and THEMIS all‐sky imager showed a near‐simultaneous occurrence of stepwise poleward expansion and dipolarization fronts. The lack of a significant time delay suggests that an X‐line initiates in the near‐Earth plasma sheet at approximately 11.8 REafter onset. This stepwise poleward expansion suggests a corresponding stepwise tailward retreat of the X‐line toward NENL locations observed further tailward in earlier studies. 
    more » « less