skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Imputation Strategy for Reliable Regional MRI Morphological Measurements
Regional morphological analysis represents a crucial step in most neuroimaging studies. Results from brain segmentation techniques are intrinsically prone to certain degrees of variability, mainly as results of suboptimal segmentation. To reduce this inherent variability, the errors are often identified through visual inspection and then corrected (semi)manually. Identification and correction of incorrect segmentation could be very expensive for large-scale studies. While identification of the incorrect results can be done relatively fast even with manual inspection, the correction step is extremely time-consuming, as it requires training staff to perform laborious manual corrections. Here we frame the correction phase of this problem as a missing data problem. Instead of manually adjusting the segmentation outputs, our computational approach aims to derive accurate morphological measures by machine learning imputation. Data imputation techniques may be used to replace missing or incorrect region average values with carefully chosen imputed values, all of which are computed based on other available multivariate informa- tion. We examined our approach of correcting segmentation outputs on a cohort of 970 subjects, which were undergone an extensive, time-consuming, manual post-segmentation correction. A random forest imputation technique recovered the gold standard results with a significant accuracy (r = 0.93, p < 0.0001; when 30% of the segmentations were considered incorrect in a non-random fashion). The random forest technique proved to be most effective for big data studies (N > 250).  more » « less
Award ID(s):
1734853 1636893
PAR ID:
10111122
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Neuroinformatics
ISSN:
1539-2791
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Current methods used to quantify brain size and compartmental scaling relationships in studies of social insect brain evolution involve manual annotations of images from histological samples, confocal microscopy or other sources. This process is susceptible to human bias and error and requires time-consuming effort by expert annotators. Standardized brain atlases, constructed through 3D registration and automatic segmentation, surmount these issues while increasing throughput to robustly sample diverse morphological and behavioral phenotypes. Here we design and evaluate three strategies to construct statistical brain atlases, or templates, using ants as a model taxon. The first technique creates a template by registering multiple brains of the same species. Brain regions are manually annotated on the template, and the labels are transformed back to each individual brain to obtain an automatic annotation, or to any other brain aligned with the template. The second strategy also creates a template from multiple brain images but obtains labels as a consensus from multiple manual annotations of individual brains comprising the template. The third technique is based on a template comprising brains from multiple species and the consensus of their labels. We used volume similarity as a metric to evaluate the automatic segmentation produced by each method against the inter- and intra-individual variability of human expert annotators. We found that automatic and manual methods are equivalent in volume accuracy, making the template technique an extraordinary tool to accelerate data collection and reduce human bias in the study of the evolutionary neurobiology of ants and other insects. 
    more » « less
  2. null (Ed.)
    Abstract The problem of missingness in observational data is ubiquitous. When the confounders are missing at random, multiple imputation is commonly used; however, the method requires congeniality conditions for valid inferences, which may not be satisfied when estimating average causal treatment effects. Alternatively, fractional imputation, proposed by Kim 2011, has been implemented to handling missing values in regression context. In this article, we develop fractional imputation methods for estimating the average treatment effects with confounders missing at random. We show that the fractional imputation estimator of the average treatment effect is asymptotically normal, which permits a consistent variance estimate. Via simulation study, we compare fractional imputation’s accuracy and precision with that of multiple imputation. 
    more » « less
  3. Longitudinal clinical trials for which recurrent events endpoints are of interest are commonly subject to missing event data. Primary analyses in such trials are often performed assuming events are missing at random, and sensitivity analyses are necessary to assess robustness of primary analysis conclusions to missing data assumptions. Control‐based imputation is an attractive approach in superiority trials for imposing conservative assumptions on how data may be missing not at random. A popular approach to implementing control‐based assumptions for recurrent events is multiple imputation (MI), but Rubin's variance estimator is often biased for the true sampling variability of the point estimator in the control‐based setting. We propose distributional imputation (DI) with corresponding wild bootstrap variance estimation procedure for control‐based sensitivity analyses of recurrent events. We apply control‐based DI to a type I diabetes trial. In the application and simulation studies, DI produced more reasonable standard error estimates than MI with Rubin's combining rules in control‐based sensitivity analyses of recurrent events. 
    more » « less
  4. Monitoring and tracking of cell motion is a key component for understanding disease mechanisms and evaluating the effects of treatments. Time-lapse optical microscopy has been commonly employed for studying cell cycle phases. However, usual manual cell tracking is very time consuming and has poor reproducibility. Automated cell tracking techniques are challenged by variability of cell region intensity distributions and resolution limitations. In this work, we introduce a comprehensive cell segmentation and tracking methodology. A key contribution of this work is that it employs multi-scale space-time interest point detection and characterization for automatic scale selection and cell segmentation. Another contribution is the use of a neural network with class prototype balancing for detection of cell regions. This work also offers a structured mathematical framework that uses graphs for track generation and cell event detection. We evaluated cell segmentation, detection, and tracking performance of our method on time-lapse sequences of the Cell Tracking Challenge (CTC). We also compared our technique to top performing techniques from CTC. Performance evaluation results indicate that the proposed methodology is competitive with these techniques, and that it generalizes very well to diverse cell types and sizes, and multiple imaging techniques. 
    more » « less
  5. Ensemble-based change detection can improve map accuracies by combining information from multiple datasets. There is a growing literature investigating ensemble inputs and applications for forest disturbance detection and mapping. However, few studies have evaluated ensemble methods other than Random Forest classifiers, which rely on uninterpretable “black box” algorithms with hundreds of parameters. Additionally, most ensemble-based disturbance maps do not utilize independently and systematically collected field-based forest inventory measurements. Here, we compared three approaches for combining change detection results generated from multi-spectral Landsat time series with forest inventory measurements to map forest harvest events at an annual time step. We found that seven-parameter degenerate decision tree ensembles performed at least as well as 500-tree Random Forest ensembles trained and tested on the same LandTrendr segmentation results and both supervised decision tree methods consistently outperformed the top-performing voting approach (majority). Comparisons with an existing national forest disturbance dataset indicated notable improvements in accuracy that demonstrate the value of developing locally calibrated, process-specific disturbance datasets like the harvest event maps developed in this study. Furthermore, by using multi-date forest inventory measurements, we are able to establish a lower bound of 30% basal area removal on detectable harvests, providing biophysical context for our harvest event maps. Our results suggest that simple interpretable decision trees applied to multi-spectral temporal segmentation outputs can be as effective as more complex machine learning approaches for characterizing forest harvest events ranging from partial clearing to clear cuts, with important implications for locally accurate mapping of forest harvests and other types of disturbances. 
    more » « less