skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fostering Reflective Engineers : Outcomes of an Arts- and Humanities-Infused Graduate Course
Engineering education traditionally focuses on technical content and problem-solving, leaving little room in the curriculum to examine broader environmental and sociotechnical impacts of engineering work. However, if engineers wish to have intentional, positive influences on these broader impacts, skills for reflective thinking and ethical decision-making are essential. The arts and humanities can provide important and often neglected perspectives for engineers in developing such skills. In a recent seminar course for civil/environmental engineers, we explored ways of developing these skills through activities including Visual Thinking Strategies (VTS), in-class readings & discussions, essay writing, and portfolio assignments. In this paper, we present selected findings from this experimental course. While the class was small, comprised of a dozen graduate students, results were encouraging. For example, findings from qualitative thematic analysis of pre- and post-course essays showed an increase in recognition of the importance of breadth of knowledge and/or perspective. Similarly, pre-post Likert-type survey results showed a statistically significant increase (p<0.005, d=1, n=10) in Contextual Competence, a self-reported measure of ability to anticipate and understand the impacts and constraints of broader contexts on engineering solutions. These findings are preliminary but suggest the course helped students develop capacity for reflection through arts- and humanities-based activities.  more » « less
Award ID(s):
1806889
PAR ID:
10111135
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 2018 World Engineering Education Forum - Global Engineering Deans Council (WEEF-GEDC)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Engineering education is increasingly looking to the liberal arts to broaden and diversify preparation of students for professional careers. The present study involves an elective graduate environmental engineering course that incorporated the arts and humanities. The goal of the course was to develop engineers and technical professionals who would become both more appreciative of and better equipped to address technical, ethical, social, and cultural challenges in engineering through the development of critical and reflective thinking skills and reflective practice in their professional work. A reflective writing assignment was submitted by students following each of fourteen course topics in response to the following question: Reflect on how you might want to apply what you learned to your development as a professional and/or to your daily life. Student responses were classified by human coders using qualitative text analytic methods and their classifications were attempted to be learned by a simple machine classifier. The goal of this analysis was to identify and quantify students’ reflections on prospective behaviors that emerged through participation in the course. The analysis indicated that the primary focus of students’ responses was self-improvement, with additional themes involving reflection, teamwork, and improving the world. The results provide a glimpse into how broadening and diversifying the curriculum might shape students’ thinking in directions that are more considerate of their contributions to their profession and society. In the discussion, we consider the findings from the human and machine assessments and suggest how incorporating AI machine methods into engineering provides new possibilities for engineering pedagogy. 
    more » « less
  2. There have recently been calls for post-secondary engineering programs to develop more well-rounded engineers who are more capable of understanding and empathizing with clients, as well engage in stronger ethical decision-making. In this study, we examine the efficacy of a hybrid humanities-engineering course in developing the empathetic performativity of engineering students taught at two universities. We use a discourse analysis methodology to examine the language in student assignments over the trajectory of this course, looking for instances where engineering students position themselves empathetically within their work. Based on our analysis, we see small gains in the empathetic performances of engineering students in this context, however, these findings are nuanced and require qualification. Keywords: Discourse Analysis, Humanities-Driven STEM, Empathy 
    more » « less
  3. Visual Thinking Strategies (VTS), an educational technique that uses art to foster visual literacy through facilitated group discussion, has been shown to promote the development of skills that transfer to other domains. In this paper, we report findings from our use of VTS in an experimental graduate course in environmental engineering that aims to foster students’ capacities for reflection. Using data from writing samples with methods of thematic analysis, we explore students’ perceptions of their own learning from the VTS portion of this semester-long course called Developing Reflective Engineers through Artful Methods. One significant theme identified was “Knowledge/Skills”, in which students identified specific knowledge gained or skills developed through their VTS experience, including skills of group discussion, listening/paraphrasing, observation, imagination/creativity, and critical thinking. Another key theme identified was “Appreciating Others’ Perspectives”, in which students expressed appreciation of the differences in perspective that VTS discussions tend naturally to draw out. This finding highlights the potential of VTS as a tool for promoting and supporting diversity in engineering. Based on these data and a brief, associated survey, we learned that students found VTS to be highly effective at helping them become more reflective and was one of the most effective methods we have attempted for the development of reflective thinking in graduate engineering. 
    more » « less
  4. Education literature has long emphasized the compounding benefits of reflective practice. Although reflection has largely been used as a tool for developing writing skills, contemporary research has explored its contributions to other disciplines including professional occupations such as nursing, teaching and engineering. Reflective assignments encourage engineering students to think critically about the impact engineers can and should have in the global community and their future role in engineering. The Department of Electrical and Computer Engineering at a small liberal arts college adopted ePortfolios in a first-year design course to encourage students to reframe their experiences and cultivate their identities as engineers. Our recent work demonstrated that students who create ePortfolios cultivate habits of reflective thinking that continue in subsequent courses within our program’s design sequence. However, student ability to transfer reflective habits across domains has remained unclear and encouraging critical engagement beyond the focused scope of technical content within more traditional core engineering courses is often difficult. In this work, we analyze students’ ability to transfer habits of reflective thinking across domains from courses within a designfocused course sequence to technical content-focused courses within a degree program. Extending reflection into core courses in a curriculum is important for several reasons. First, it stimulates metacognition which enables students to transfer content to future courses. Second, it builds students’ ability to think critically about technical subject matter. And third, it contributes to the ongoing development of their identities as engineers. Particularly for students traditionally underrepresented in engineering, the ability to integrate prior experiences and interests into one’s evolving engineering identity may lead to better retention and sense of belonging in the profession. In the first-year design course, electrical and computer engineering students (N=28) at a liberal arts university completed an ePortfolio assignment to explore the discipline. Using a combination of inductive and deductive coding techniques, multiple members of our team coded student reports and checked for intercoder reliability. Previously, we found that students’ reflection dramatically improved in the second-year design course [1]. Drawing upon Hatton and Smith’s (1995) categorizations of reflective thinking [2], we observed that students were particularly proficient in Dialogic Reflection, or reflection that relates to their own histories, interests, and experiences. In this paper, we compare the quality of student reflections in the second-year design course with those in a second-year required technical course to discover if reflective capabilities have transferred into a technical domain. We discovered that students are able to transfer reflective thinking across different types of courses, including those emphasizing technical content, after a single ePortfolio activity. Furthermore, we identified a similar pattern of improvement most notably in Dialogic Reflection. This finding indicates that students are developing sustained habits of reflective thinking. As a result, we anticipate an increase in their ability to retain core engineering concepts throughout the curriculum. Our future plans are to expand ePortfolio usage to all design courses as well as some 
    more » « less
  5. Abstract There is a need for novel teaching approaches to train biomedical engineers that are conversant across disciplines and have the technical skills to address interdisciplinary scientific and technological challenges. Here, we describe a graduate-level miniaturized biomedical device engineering course that has been taught over the last decade in in-person, remote, and hybrid formats. The course employs experiential learning components, including a proposal development and review that mimic the National Institutes of Health process and technical assignments that use raw research data to simulate a research experience. The effectiveness of the course was measured via pre-/post-course concept inventory surveys as well as course evaluations with targeted questions on the learning instruments. Statistical comparison of pre-/post-course survey scores suggests that the course was effective in students achieving the learning objectives, and comparison of relative increase in pre-/post-course survey scores across different instruction formats (i.e., in-person, remote, hybrid) showed minimal difference, suggesting that the teaching elements are readily transferrable to remote instruction. 
    more » « less