This work in progress paper assesses whether a first-year ePortfolio experience promotes better reflection in subsequent engineering courses. While reflection is vital to promote learning, historically, reflection receives less attention in engineering education when compared to other fields [1]. Yet, cultivating more reflective engineers yields several important benefits including building self-efficacy and empowering student agency. Through continued practice, engineering students can develop a habit of reflective thinking which increases students’ ability to transfer knowledge across contexts. The adoption of ePortfolios is becoming an increasingly popular strategy to improve student learning and establish a culture of reflection. The Department of Electrical and Computer Engineering at a small liberal arts college in the northeastern United States is beginning to incorporate ePortfolios into courses. Professors of a first-year design course developed an ePortfolio assignment that gives students a space to reflect on their potential career paths and envision themselves as future engineers. We were curious about the impact this experience might have on students’ reflective thinking as they continue through the program. This work was guided by the research question: Do student ePortfolios in a first-year design course promote better reflection in subsequent technical courses? In this paper, we investigate this question by coding instances of reflection in student lab reports from a second-year design course. As a control group, lab reports from students the previous year who had not completed the ePortfolio activity were compared. We provide a quantitative summary of our analysis which concludes students that were provided with a reflective ePortfolio experience in their first-year are more reflective thinkers in their second-year.
more »
« less
Addressing the Barriers of Knowledge Transfer: Using ePortfolios to Enhance Student Reflection in Technical Courses
Education literature has long emphasized the compounding benefits of reflective practice. Although reflection has largely been used as a tool for developing writing skills, contemporary research has explored its contributions to other disciplines including professional occupations such as nursing, teaching and engineering. Reflective assignments encourage engineering students to think critically about the impact engineers can and should have in the global community and their future role in engineering. The Department of Electrical and Computer Engineering at a small liberal arts college adopted ePortfolios in a first-year design course to encourage students to reframe their experiences and cultivate their identities as engineers. Our recent work demonstrated that students who create ePortfolios cultivate habits of reflective thinking that continue in subsequent courses within our program’s design sequence. However, student ability to transfer reflective habits across domains has remained unclear and encouraging critical engagement beyond the focused scope of technical content within more traditional core engineering courses is often difficult. In this work, we analyze students’ ability to transfer habits of reflective thinking across domains from courses within a designfocused course sequence to technical content-focused courses within a degree program. Extending reflection into core courses in a curriculum is important for several reasons. First, it stimulates metacognition which enables students to transfer content to future courses. Second, it builds students’ ability to think critically about technical subject matter. And third, it contributes to the ongoing development of their identities as engineers. Particularly for students traditionally underrepresented in engineering, the ability to integrate prior experiences and interests into one’s evolving engineering identity may lead to better retention and sense of belonging in the profession. In the first-year design course, electrical and computer engineering students (N=28) at a liberal arts university completed an ePortfolio assignment to explore the discipline. Using a combination of inductive and deductive coding techniques, multiple members of our team coded student reports and checked for intercoder reliability. Previously, we found that students’ reflection dramatically improved in the second-year design course [1]. Drawing upon Hatton and Smith’s (1995) categorizations of reflective thinking [2], we observed that students were particularly proficient in Dialogic Reflection, or reflection that relates to their own histories, interests, and experiences. In this paper, we compare the quality of student reflections in the second-year design course with those in a second-year required technical course to discover if reflective capabilities have transferred into a technical domain. We discovered that students are able to transfer reflective thinking across different types of courses, including those emphasizing technical content, after a single ePortfolio activity. Furthermore, we identified a similar pattern of improvement most notably in Dialogic Reflection. This finding indicates that students are developing sustained habits of reflective thinking. As a result, we anticipate an increase in their ability to retain core engineering concepts throughout the curriculum. Our future plans are to expand ePortfolio usage to all design courses as well as some
more »
« less
- Award ID(s):
- 2022271
- PAR ID:
- 10530544
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-3642-9
- Page Range / eLocation ID:
- 1 to 9
- Subject(s) / Keyword(s):
- ePortfolio reflections first-year design transfer of learning
- Format(s):
- Medium: X
- Location:
- College Station, TX, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Engineering design thinking has become an important part of the educational discussion for both researchers and practitioners. Colleges and universities seek to graduate engineering students who can engage in the complex nature of combining both technical performance with design thinking skills. Prior research has shown that design thinking can be a solution for solving complicated technical and social issues in a holistic, adaptive way. However, little is known about how students make sense of their design thinking experiences and reconcile that into their perceptions of what it means to be a successful engineer. As part of a five-year National Science Foundation REvolutionizing Engineering and Computer Science Departments (NSF-RED) grant, this study highlights the experiences of students engaged in a course which has been redesigned to enhance student development through design thinking pedagogy. This case study sought to understand how electrical, computer, and software engineering students engage with design thinking and how that engagement shapes their perceptions of what success looks like. The case study was informed through observations of lecture and lab classroom contexts, interviews with students, and a review of relevant course documents. Participants met the following criteria: (a) were over the age of 18, (b) majoring in CES engineering, and (c) were currently enrolled in one of two courses currently undergoing redesign: a second-year electrical engineering course called Circuits or a second-year computer engineering course called Embedded Systems. Preliminary findings reveal that students engaged in the design thinking course described a disconnect between design thinking elements of the course and their perceptions of what it meant to be a successful electrical, computer, or software engineer. Although design thinking concepts focused on empathy-building and customer needs, it was often difficult for engineering students to see beyond the technical content of their course and conceptualize elements of design thinking as essential to their successful performance as engineers. This study bears significance to practitioners and researchers interested in (re)designing curriculum to meet the growing needs of innovation for today’s customer’s. Implications for policy and practice will be discussed to enhance the way that engineering programs, curricula, and workforce training are created.more » « less
-
Engineering education is increasingly looking to the liberal arts to broaden and diversify preparation of students for professional careers. The present study involves an elective graduate environmental engineering course that incorporated the arts and humanities. The goal of the course was to develop engineers and technical professionals who would become both more appreciative of and better equipped to address technical, ethical, social, and cultural challenges in engineering through the development of critical and reflective thinking skills and reflective practice in their professional work. A reflective writing assignment was submitted by students following each of fourteen course topics in response to the following question: Reflect on how you might want to apply what you learned to your development as a professional and/or to your daily life. Student responses were classified by human coders using qualitative text analytic methods and their classifications were attempted to be learned by a simple machine classifier. The goal of this analysis was to identify and quantify students’ reflections on prospective behaviors that emerged through participation in the course. The analysis indicated that the primary focus of students’ responses was self-improvement, with additional themes involving reflection, teamwork, and improving the world. The results provide a glimpse into how broadening and diversifying the curriculum might shape students’ thinking in directions that are more considerate of their contributions to their profession and society. In the discussion, we consider the findings from the human and machine assessments and suggest how incorporating AI machine methods into engineering provides new possibilities for engineering pedagogy.more » « less
-
Engineering education traditionally focuses on technical content and problem-solving, leaving little room in the curriculum to examine broader environmental and sociotechnical impacts of engineering work. However, if engineers wish to have intentional, positive influences on these broader impacts, skills for reflective thinking and ethical decision-making are essential. The arts and humanities can provide important and often neglected perspectives for engineers in developing such skills. In a recent seminar course for civil/environmental engineers, we explored ways of developing these skills through activities including Visual Thinking Strategies (VTS), in-class readings & discussions, essay writing, and portfolio assignments. In this paper, we present selected findings from this experimental course. While the class was small, comprised of a dozen graduate students, results were encouraging. For example, findings from qualitative thematic analysis of pre- and post-course essays showed an increase in recognition of the importance of breadth of knowledge and/or perspective. Similarly, pre-post Likert-type survey results showed a statistically significant increase (p<0.005, d=1, n=10) in Contextual Competence, a self-reported measure of ability to anticipate and understand the impacts and constraints of broader contexts on engineering solutions. These findings are preliminary but suggest the course helped students develop capacity for reflection through arts- and humanities-based activities.more » « less
-
Kallepalli, Akhil (Ed.)As the semiconductor and photonics industries grapple with mounting business pressures, weaving resourceefficiency into engineering education has evolved from a priority to an imperative. Under the umbrella of FUTUR-IC, this paper highlights novel pedagogical strategies at Bridgewater State University (BSU) aimed at equipping photonics and optical engineers to address today’s ecological challenges. We detail two complementary approaches that together form a cohesive educational framework. The first involves a newly introduced fresh year-level seminar on Resource Efficient Microchip Manufacturing, which immerses students in resource-efficiency metrics such as Life Cycle Intelligence and “design for resourceefficiency” principles. By interlinking photonic integration concepts with tangible business impact assessments, this course fosters an early appreciation of how advanced technologies can be developed responsibly, with reduced energy consumption and minimized waste. The second approach redefines senior-level engineering design courses to embed multifaceted resourceefficiency criteria in the design process. Through project-based learning and collaboration with industry partners, students integrate photonic solutions with data-driven metrics, refining their ability to propose holistic prototypes. These initiatives go beyond technical mastery to cultivate interdisciplinary collaboration and critical thinking. This work illustrates how an integrated approach to engineering education can spark the next generation of practitioners to design for both technological excellence and business viability.more » « less
An official website of the United States government

