skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Iterative Projection and Matching: Finding Structure-preserving Representatives and Its Application to Computer Vision
Novel machine learning algorithms that make the best use of a significantly less amount of data are of great interest. For example, active learning (AL) aims at addressing this problem by iteratively training a model using a small number of labeled data, testing the whole data on the trained model, and then querying the labels of some selected data, which then are used for training a new model. This paper presents a fast and accurate data selection method, in which the selected samples are optimized to span the subspace of all data. We propose a new selection algorithm, referred to as iterative projection and matching (IPM), with linear complexity w.r.t. the number of data, and without any parameters to be tuned. In our algorithm, at each iteration, the maximum information from the structure of the data is captured by one selected sample, and the captured information is neglected in the next iterations by projection on the null-space of previously selected samples. The computational efficiency and the selection accuracy of our proposed algorithm outperform those of the conventional methods. Furthermore, the superiority of the proposed algorithm is shown on active learning for video action recognition dataset on UCF-101; learning using representatives on ImageNet; training a generative adversarial network (GAN) to generate multi-view images from a single-view input on CMU Multi-PIE dataset; and video summarization on UTE Egocentric dataset.  more » « less
Award ID(s):
1741431
PAR ID:
10111243
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Deep Neural Networks (or DNNs) must constantly cope with distribution changes in the input data when the task of interest or the data collection protocol changes. Retraining a network from scratch to combat this issue poses a significant cost. Meta-learning aims to deliver an adaptive model that is sensitive to these underlying distribution changes, but requires many tasks during the meta-training process. In this paper, we propose a tAsk-auGmented actIve meta-LEarning (AGILE) method to efficiently adapt DNNs to new tasks by using a small number of training examples. AGILE combines a meta-learning algorithm with a novel task augmentation technique which we use to generate an initial adaptive model. It then uses Bayesian dropout uncertainty estimates to actively select the most difficult samples when updating the model to a new task. This allows AGILE to learn with fewer tasks and a few informative samples, achieving high performance with a limited dataset. We perform our experiments using the brain cell classification task and compare the results to a plain meta-learning model trained from scratch. We show that the proposed task-augmented meta-learning framework can learn to classify new cell types after a single gradient step with a limited number of training samples. We show that active learning with Bayesian uncertainty can further improve the performance when the number of training samples is extremely small. Using only 1% of the training data and a single update step, we achieved 90% accuracy on the new cell type classification task, a 50% points improvement over a state-of-the-art meta-learning algorithm. 
    more » « less
  2. Coreset is a small set that provides a data summary for a large dataset, such that training solely on the small set achieves competitive performance compared with a large dataset. In rehearsal-based continual learning, the coreset is typically used in the memory replay buffer to stand for representative samples in previous tasks, and the coreset selection procedure is typically formulated as a bilevel problem. However, the typical bilevel formulation for coreset selection explicitly performs optimization over discrete decision variables with greedy search, which is computationally expensive. Several works consider other formulations to address this issue, but they ignore the nested nature of bilevel optimization problems and may not solve the bilevel coreset selection problem accurately. To address these issues, we propose a new bilevel formulation, where the inner problem tries to find a model which minimizes the expected training error sampled from a given probability distribution, and the outer problem aims to learn the probability distribution with approximately $$K$$ (coreset size) nonzero entries such that learned model in the inner problem minimizes the training error over the whole data. To ensure the learned probability has approximately $$K$$ nonzero entries, we introduce a novel regularizer based on the smoothed top-$$K$$ loss in the upper problem. We design a new optimization algorithm that provably converges to the $$\epsilon$$-stationary point with $$O(1/\epsilon^4)$$ computational complexity. We conduct extensive experiments in various settings in continual learning, including balanced data, imbalanced data, and label noise, to show that our proposed formulation and new algorithm significantly outperform competitive baselines. From bilevel optimization point of view, our algorithm significantly improves the vanilla greedy coreset selection method in terms of running time on continual learning benchmark datasets. The code is available at \url{https://github.com/MingruiLiu-ML-Lab/Bilevel-Coreset-Selection-via-Regularization}. 
    more » « less
  3. It is common in machine learning applications that unlabeled data are abundant while acquiring labels is extremely difficult. In order to reduce the cost of training model while maintaining the model quality, active learning provides a feasible solution. Instead of acquiring labels for random samples, active learning methods carefully select the data to be labeled so as to alleviate the impact from the redundancy or noise in the selected data and improve the trained model performance. In early stage experimental design, previous active learning methods adopted data reconstruction framework, such that the selected data maintained high representative power. However, these models did not consider the data class structure, thus the selected samples could be predominated by the samples from major classes. Such mechanism fails to include samples from the minor classes thus tends to be less representative. To solve this challenging problem, we propose a novel active learning model for the early stage of experimental design. We use exclusive sparsity norm to enforce the selected samples to be (roughly) evenly distributed among different groups. We provide a new efficient optimization algorithm and theoretically prove the optimal convergence rate O(1/{T^2}). With a simple substitution, we reduce the computational load of each iteration from O(n^3) to O(n^2), which makes our algorithm more scalable than previous frameworks. 
    more » « less
  4. We consider the problem of subset selection in the online setting, where data arrive incrementally. Instead of storing and running subset selection on the entire dataset, we propose an incremental subset selection framework that, at each time instant, uses the previously selected set of representatives and the new batch of data in order to update the set of representatives. We cast the problem as an integer bi- nary optimization minimizing the encoding cost of the data via representatives regularized by the number of selected items. As the proposed optimization is, in general, NP-hard and non-convex, we study a greedy approach based on un- constrained submodular optimization and also propose an efficient convex relaxation. We show that, under appropriate conditions, the solution of our proposed convex algorithm achieves the global optimal solution of the non-convex problem. Our results also address the conventional problem of subset selection in the offline setting, as a special case. By extensive experiments on the problem of video summarization, we demonstrate that our proposed online subset selection algorithms perform well on real data, capturing diverse representative events in videos, while they obtain objective function values close to the offline setting. 
    more » « less
  5. We consider the problem of subset selection in the online setting, where data arrive incrementally. Instead of storing and running subset selection on the entire dataset, we propose an incremental subset selection framework that, at each time instant, uses the previously selected set of representatives and the new batch of data in order to update the set of representatives. We cast the problem as an integer binary optimization minimizing the encoding cost of the data via representatives regularized by the number of selected items. As the proposed optimization is, in general, NP-hard and non-convex, we study a greedy approach based on unconstrained submodular optimization and also propose an efficient convex relaxation. We show that, under appropriate conditions, the solution of our proposed convex algorithm achieves the global optimal solution of the non-convex problem. Our results also address the conventional problem of subset selection in the offline setting, as a special case. By extensive experiments on the problem of video summarization, we demonstrate that our proposed online subset selection algorithms perform well on real data, capturing diverse representative events in videos, while they obtain objective function values close to the offline setting. 
    more » « less