skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Women's Syntactic Resilience and Men's Grammatical Luck: Gender-Bias in Part-of-Speech Tagging and Dependency Parsing
Several linguistic studies have shown the prevalence of various lexical and grammatical patterns in texts authored by a person of a particular gender, but models for part-of-speech tagging and dependency parsing have still not adapted to account for these differences. To address this, we annotate the Wall Street Journal part of the Penn Treebank with the gender information of the articles' authors, and build taggers and parsers trained on this data that show performance differences in text written by men and women. Further analyses reveal numerous part-of-speech tags and syntactic relations whose prediction performances benefit from the prevalence of a specific gender in the training data. The results underscore the importance of accounting for gendered differences in syntactic tasks, and outline future venues for developing more accurate taggers and parsers. We release our data to the research community.  more » « less
Award ID(s):
1815291
PAR ID:
10111338
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Association for Computational Linguistics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Active learning (AL) uses a data selection algorithm to select useful training samples to minimize annotation cost. This is now an essential tool for building low-resource syntactic analyzers such as part-of-speech (POS) taggers. Existing AL heuristics are generally designed on the principle of selecting uncertain yet representative training instances, where annotating these instances may reduce a large number of errors. However, in an empirical study across six typologically diverse languages (German, Swedish, Galician, North Sami, Persian, and Ukrainian), we found the surprising result that even in an oracle scenario where we know the true uncertainty of predictions, these current heuristics are far from optimal. Based on this analysis, we pose the problem of AL as selecting instances that maximally reduce the confusion between particular pairs of output tags. Extensive experimentation on the aforementioned languages shows that our proposed AL strategy outperforms other AL strategies by a significant margin. We also present auxiliary results demonstrating the importance of proper calibration of models, which we ensure through cross-view training, and analysis demonstrating how our proposed strategy selects examples that more closely follow the oracle data distribution. The code is publicly released here. 1 
    more » « less
  2. As the number, size and complexity of building construction projects increase, code compliance checking becomes more challenging because of the time-consuming, costly, and error-prone nature of a manual checking process. A fully automated code compliance checking would be desirable in facilitating a more efficient, cost effective, and human error-proof code checking. Such automation requires automated information extraction from building designs and building codes, and automated information transformation to a format that allows automated reasoning. Natural Language Processing (NLP) is an important technology to support such automated processing of building codes, because building codes are represented in natural language texts. Part-of-speech (POS) tagging, as an important basis of NLP tasks, must have a high performance to ensure the quality of the automated processing of building codes in such a compliance checking system. However, no systematic testing of existing POS taggers on domain specific building codes data have been performed. To address this gap, the authors analyzed the performance of seven state-of-the-at POS taggers on tagging building codes and compared their results to a manually-labeled gold standard. The authors aim to: (1) find the best performing tagger in terms of accuracy, and (2) identify common sources of errors. In providing the POS tags, the authors used the Penn Treebank tagset, which is a widely used tagset with a proper balance between conciseness and information richness. An average accuracy of 88.80% was found on the testing data. The Standford coreNLP tagger outperformed the other taggers in the experiment. Common sources of errors were identified to be: (1) word ambiguity, (2) rare words, and (3) unique meaning of common English words in the construction context. The found result of machine taggers on building codes calls for performance improvement, such as error-fixing transformational rules and machine taggers that are trained on building codes. 
    more » « less
  3. Grammar induction, the task of learning a set of syntactic rules from minimally annotated training data, provides a means of exploring the longstanding question of whether humans rely on innate knowledge to acquire language. Of the various formalisms available for grammar induction, categorial grammars provide an appealing option due to their transparent interface between syntax and semantics. However, to obtain competitive results, previous categorial grammar inducers have relied on shortcuts such as part-of-speech annotations or an ad hoc bias term in the objective function to ensure desirable branching behavior. We present a categorial grammar inducer that eliminates both shortcuts: it learns from raw data, and does not rely on a biased objective function. This improvement is achieved through a novel stochastic process used to select the set of available syntactic categories. On a corpus of English child-directed speech, the model attains a recall-homogeneity of 0.48, a large improvement over previous categorial grammar inducers. 
    more » « less
  4. We test predictions from the language emergent perspective on verbal working memory that lexico-syntactic constraints should support both item and order memory. In natural language, long-term knowledge of lexico-syntactic patterns involving part of speech, verb biases, and noun animacy support language comprehension and production. In three experiments, participants were presented with randomly generated dative-like sentences or lists in which part of speech, verb biases, and animacy of a single word were manipulated. Participants were more likely to recall words in the correct position when presented with a verb over a noun in the verb position, a good dative verb over an intransitive verb in the verb position, and an animate noun over an inanimate noun in the subject noun position. These results demonstrate that interactions between words and their context in the form of lexico-syntactic constraints influence verbal working memory. 
    more » « less
  5. Abstract This paper demonstrates an automated workflow for extracting network data from policy documents. We use natural language processing tools, part‐of‐speech tagging, and syntactic dependency parsing, to represent relationships between real‐world entities based on how they are described in text. Using a corpus of regional groundwater management plans, we demonstrate unique graph motifs created through parsing syntactic relationships and how document‐level syntax can be aggregated to develop large‐scale graphs. This approach complements and extends existing methods in public management and governance research by (1) expanding the feasible geographic and temporal scope of data collection and (2) allowing for customized representations of governance systems to fit different research applications, particularly by creating graphs with many different node and edge types. We conclude by reflecting on the challenges, limitations, and future directions of automated, text‐based methods for governance research. 
    more » « less