skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reducing Confusion in Active Learning for Part-Of-Speech Tagging
Active learning (AL) uses a data selection algorithm to select useful training samples to minimize annotation cost. This is now an essential tool for building low-resource syntactic analyzers such as part-of-speech (POS) taggers. Existing AL heuristics are generally designed on the principle of selecting uncertain yet representative training instances, where annotating these instances may reduce a large number of errors. However, in an empirical study across six typologically diverse languages (German, Swedish, Galician, North Sami, Persian, and Ukrainian), we found the surprising result that even in an oracle scenario where we know the true uncertainty of predictions, these current heuristics are far from optimal. Based on this analysis, we pose the problem of AL as selecting instances that maximally reduce the confusion between particular pairs of output tags. Extensive experimentation on the aforementioned languages shows that our proposed AL strategy outperforms other AL strategies by a significant margin. We also present auxiliary results demonstrating the importance of proper calibration of models, which we ensure through cross-view training, and analysis demonstrating how our proposed strategy selects examples that more closely follow the oracle data distribution. The code is publicly released here. 1  more » « less
Award ID(s):
1761548
PAR ID:
10280843
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Transactions of the Association for Computational Linguistics
Volume:
9
ISSN:
2307-387X
Page Range / eLocation ID:
1 to 16
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Active learning is commonly used to train label-efficient models by adaptively selecting the most informative queries. However, most active learning strategies are designed to either learn a representation of the data (e.g., embedding or metric learning) or perform well on a task (e.g., classification) on the data. However, many machine learning tasks involve a combination of both representation learning and a task-specific goal. Motivated by this, we propose a novel unified query framework that can be applied to any problem in which a key component is learning a representation of the data that reflects similarity. Our approach builds on similarity or nearest neighbor (NN) queries which seek to select samples that result in improved embeddings. The queries consist of a reference and a set of objects, with an oracle selecting the object most similar (i.e., nearest) to the reference. In order to reduce the number of solicited queries, they are chosen adaptively according to an information theoretic criterion. We demonstrate the effectiveness of the proposed strategy on two tasks - active metric learning and active classification - using a variety of synthetic and real world datasets. In particular, we demonstrate that actively selected NN queries outperform recently developed active triplet selection methods in a deep metric learning setting. Further, we show that in classification, actively selecting class labels can be reformulated as a process of selecting the most informative NN query, allowing direct application of our method. 
    more » « less
  2. A key barrier to applying any smart technology to a building is the requirement of locating and connecting to the necessary resources among the thousands of sensing and control points, i.e., the metadata mapping problem. Existing solutions depend on exhaustive manual annotation of sensor metadata - a laborious, costly, and hardly scalable process. To reduce the amount of manual effort required, this paper presents a multi-oracle selective sampling framework to leverage noisy labels from information sources with unknown reliability such as existing buildings, which we refer to as weak oracles, for metadata mapping. This framework involves an interactive process, where a small set of sensor instances are progressively selected and labeled for it to learn how to aggregate the noisy labels as well as to predict sensor types. Two key challenges arise in designing the framework, namely, weak oracle reliability estimation and instance selection for querying. To address the first challenge, we develop a clustering-based approach for weak oracle reliability estimation to capitalize on the observation that weak oracles perform differently in different groups of instances. For the second challenge, we propose a disagreement-based query selection strategy to combine the potential effect of a labeled instance on both reducing classifier uncertainty and improving the quality of label aggregation. We evaluate our solution on a large collection of real-world building sensor data from 5 buildings with more than 11, 000 sensors of 18 different types. The experiment results validate the effectiveness of our solution, which outperforms a set of state-of-the-art baselines. 
    more » « less
  3. Dodis, Y. (Ed.)
    Memory-hard functions (MHFs) are a useful cryptographic primitive which can be used to design egalitarian proof of work puzzles and to protect low entropy secrets like passwords against brute-force attackers. Intuitively, a memory-hard function is a function whose evaluation costs are dominated by memory costs even if the attacker uses specialized hardware (FPGAs/ASICs), and several cost metrics have been proposed to quantify this intuition. For example, space-time cost looks at the product of running time and the maximum space usage over the entire execution of an algorithm. Alwen and Serbinenko (STOC 2015) observed that the space-time cost of evaluating a function multiple times may not scale linearly in the number of instances being evaluated and introduced the stricter requirement that a memory-hard function has high cumulative memory complexity (CMC) to ensure that an attacker’s amortized space-time costs remain large even if the attacker evaluates the function on multiple different inputs in parallel. Alwen et al. (EUROCRYPT 2018) observed that the notion of CMC still gives the attacker undesirable flexibility in selecting space-time tradeoffs e.g., while the MHF Scrypt has maximal CMC Ω(N^2), an attacker could evaluate the function with constant O(1) memory in time O(N^2). Alwen et al. introduced an even stricter notion of Sustained Space complexity and designed an MHF which has s=Ω(N/logN) sustained complexity t=Ω(N) i.e., any algorithm evaluating the function in the parallel random oracle model must have at least t=Ω(N) steps where the memory usage is at least Ω(N/logN). In this work, we use dynamic pebbling games and dynamic graphs to explore tradeoffs between sustained space complexity and cumulative memory complexity for data-dependent memory-hard functions such as Argon2id and Scrypt. We design our own dynamic graph (dMHF) with the property that any dynamic pebbling strategy either (1) has Ω(N) rounds with Ω(N) space, or (2) has CMC Ω(N^{3−ϵ})—substantially larger than N^2. For Argon2id we show that any dynamic pebbling strategy either(1) has Ω(N) rounds with Ω(N^{1−ϵ}) space, or (2) has CMC ω(N^2). We also present a dynamic version of DRSample (Alwen et al. 2017) for which any dynamic pebbling strategy either (1) has Ω(N) rounds with Ω(N/log N) space, or (2) has CMC Ω(N^3/log N). 
    more » « less
  4. This paper investigates methods for training parameterized functions for guiding state-space search algorithms. Existing work commonly generates data for training such guiding functions by solving problem instances while leveraging the current version of the guiding function. As a result, as training progresses, the guided search algorithm can solve more difficult instances that are, in turn, used to further train the guiding function. These methods assume that a set of problem instances of varied difficulty is provided. Since previous work was not designed to distinguish the instances that the search algorithm can solve from those that cannot be solved with the current guiding function, the algorithm commonly wastes time attempting and failing to solve many of these instances. In this paper, we improve upon these training methods by generating a curriculum for learning the guiding function that directly addresses this issue. Namely, we propose and evaluate a Teacher-Student Curriculum (TSC) approach where the teacher is an evolutionary strategy that attempts to generate problem instances of ``correct difficulty'' and the student is a guided search algorithm utilizing the current guiding function. The student attempts to solve the problem instances generated by the teacher. We conclude with experiments demonstrating that TSC outperforms the current state-of-the-art Bootstrap Learning method in three representative benchmark domains and three guided search algorithms, with respect to the time required to solve all instances of the test set. 
    more » « less
  5. We propose data-driven one-pass streaming algorithms for estimating the number of triangles and four cycles, two fundamental problems in graph analytics that are widely studied in the graph data stream literature. Recently, Hsu et al. (2019a) and Jiang et al. (2020) applied machine learning techniques in other data stream problems, using a trained oracle that can predict certain properties of the stream elements to improve on prior “classical” algorithms that did not use oracles. In this paper, we explore the power of a “heavy edge” oracle in multiple graph edge streaming models. In the adjacency list model, we present a one-pass triangle counting algorithm improving upon the previous space upper bounds without such an oracle. In the arbitrary order model, we present algorithms for both triangle and four cycle estimation with fewer passes and the same space complexity as in previous algorithms, and we show several of these bounds are optimal. We analyze our algorithms under several noise models, showing that the algorithms perform well even when the oracle errs. Our methodology expands upon prior work on “classical” streaming algorithms, as previous multi-pass and random order streaming algorithms can be seen as special cases of our algorithms, where the first pass or random order was used to implement the heavy edge oracle. Lastly, our experiments demonstrate advantages of the proposed method compared to state-of-the-art streaming algorithms. 
    more » « less