Teacher self-efficacy (SE) has been observed to be an 'important construct for Computer Science (CS) teachers' professional development because it can predict both teaching behaviors as well as student outcomes" [1]. The purpose of the present study was to investigate teacher CS SE during a two-year federally funded professional development (PD) and curriculum development project for middle school teachers incorporating game-design and the Unity development platform. The research question investigated is: How does teacher self-efficacy for teaching computer science via game design with the Unity game development platform change during a year-long PD program? Investigations of teacher SE for teaching CS have resulted in some surprising results. For example, it has been reported that - There were no differences in self-efficacy based on teachers' overall level of experience, despite previous findings that teacher self-efficacy is related to amount of experience" and "no differences in self-efficacy related to the teachers' own level of experience with CS" [2], thus further study of CS teacher SE is warranted. Participants in this study were six middle school teachers from four middle schools in the southeastern United States. They participated in a year-long PD program learning the Unity game development platform, elements of game design,more »
Solarize Your School: A Solar Energy System Design Challenge
As solar energy becomes increasingly affordable, many schools are considering installing new solar power systems. Can students contribute to the design, evaluation, and decision-making process in any way? Many students are familiar with solar power and energy, having researched solar energy on the internet, built solar cookers, inspected mini solar
cells, gone on field trips to local solar farms, and so on. Well-informed and motivated, they are just one step away from taking responsibility for their own schools.
In this article, we present Solarize Your School, an engineering project that gives students the opportunity to design and evaluate solar power solutions for their own schools. This
STEM project requires students to learn and apply skills and practices related to solar energy and photovoltaic technology concepts, such as architectural measurement and modeling techniques, graphical interpretation and data analysis, budgeting and investing, scientific inquiry and engineering design, and collaboration and communication (see Next Generation Science Standards table, p. 47).
Solarize Your School can be incorporated into environmental science, physical science, and engineering courses, and can be adapted to fit any curriculum scope and time frame. We suggest a 10-day sequence of learning activities. All the technologies and
materials mentioned are freely available (see “On the web”).
- Award ID(s):
- 1721054
- Publication Date:
- NSF-PAR ID:
- 10111372
- Journal Name:
- The Science teacher
- Volume:
- 86
- Issue:
- 4
- Page Range or eLocation-ID:
- 40-47
- ISSN:
- 0189-7594
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Our NSF-funded ITEST project focuses on the collaborative design, implementation, and study of recurrent hands-on engineering activities with middle school youth in three rural communities in or near Appalachia. To achieve this aim, our team of faculty and graduate students partner with school educators and industry experts embedded in students’ local communities to collectively develop curriculum to aim at teacher-identified science standard and facilitate regular in-class interventions throughout the academic year. Leveraging local expertise is especially critical in this project because family pressures, cultural milieu, and preference for local, stable jobs play considerable roles in how Appalachian youth choose possible careers. Our partner communities have voluntarily opted to participate with us in a shared implementation-research program and as our project unfolds we are responsive to community-identified needs and preferences while maintaining the research program’s integrity. Our primary focus has been working to incorporate hands-on activities into science classrooms aimed at state science standards in recognition of the demands placed on teachers to align classroom time with state standards and associated standardized achievement tests. Our focus on serving diverse communities while being attentive to relevant research such as the preference for local, stable jobs attention to cultural relevance led us tomore »
-
Barriers to broadening participation in engineering to rural and Appalachian youth include misalignment with family and community values, lack of opportunities, and community misperceptions of engineering. While single interventions are unlikely to stimulate change in these areas, more sustainable interventions that are co-designed with local relevance appear promising. Through our NSF ITEST project, we test the waters of this intervention model through partnership with school systems and engineering industry to implement a series of engineering-themed, standards-aligned lessons for the middle school science classroom. Our mixed methods approach includes collection of interview and survey data from administrators, teachers, engineers, and university affiliates as well as observation and student data from the classroom. We have utilized theory from learning science and organizational collaboration to structure and inform our analysis and explore the impact of our project. The research is guided by the following questions: RQ 1: How do participants conceptualize engineering careers? How and why do such perceptions shift throughout the project? RQ 2: What elements of the targeted intervention affect student motivation towards engineering careers specifically with regard to developing competencies and ability beliefs regarding engineering? RQ 3: How can strategic collaboration between K12 and industry promote a shift in teacher’smore »
-
Economically disadvantaged youth residing in mountain tourist communities represent an important and understudied rural population. These communities typically include a large percentage of children that are English language learners. Our NSF STEM Career Connections project, A Model for Preparing Economically-Disadvantaged Rural Youth for the Future STEM Workplace, investigates strategies that help middle school youth in these communities to envision a broader range of workforce opportunities, especially in STEM and computing careers. This poster highlights the initial findings of an innovative model that involves working with local schools and community partners to support the integration of local career contexts, engineering phenomena, 3D printing technologies, career connections, and mentorship into formal educational experiences to motivate and prepare rural youth for future STEM careers. We focus on select classrooms at two middle schools and describe the implementation of a novel 3D printing curriculum during the 2020-2021 school-year. Two STEM teachers implemented the five-week curriculum with approximately 300 students per quarter. To create a rich inquiry-driven learning environment, the curriculum uses an instructional design approach called storylining. This approach is intended to promote coherence, relevance, and meaning from the students’ perspectives by using students’ questions to drive investigations and lessons. Students worked towards answeringmore »
-
Although women make up a significant portion of the college educated population, there remains a sizable gap between the number of men and women pursuing degrees and careers in science, technology, engineering and math (STEM) fields. This gender gap begins at middle school and widens considerably in the later high school years. One major factor for this gap is the lack of belonging women can feel towards engineering. As one approach to developing and improving this sense of belonging, we focused on improving students’ comprehension of engineering topics during a weeklong materials science and engineering summer camp for high school girls. We took a two-prong approach: a unifying paradigm and a design project. The purpose of this was to allow for transfer of learning throughout the week, allowing the students to build and showcase their own comprehension. The paradigm, the materials science tetrahedron, provided cohesion throughout an otherwise broad and seemingly disconnected field, while the design project allowed for the students to implement what they learned during the week in a group setting. This approach concomitantly enhances confidence and their sense of belonging within engineering. In this paper we highlight lessons learned from incorporating this approach into our program, includingmore »