skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Introducing the Open Science Chain: Protecting Integrity and Provenance of Research Data
Data sharing is an integral component of research and academic publications, allowing for independent verification of results. Researchers have the ability to extend and build upon prior research when they are able to efficiently access, validate, and verify the data referenced in publications. Despite the well known benefits of making research data more open, data withholding rates have remained constant. Some disincentives to sharing research data include lack of credit, and fear of misrepresentation of data in the absence of context and provenance. While there are several research data sharing repositories that focus on making research data available, there are no cyberinfrastructure platforms that enable researchers to efficiently validate the authenticity of datasets, track the provenance, view the lineage of the data and verify ownership information. In this paper, we introduce and provide an overview of the NSF funded Open Science Chain, a cyberinfrastructure platform built using blockchain technologies that securely stores metadata and verification information about research data and tracks changes to that data in an auditable manner in order to address issues related to reproducibility and accountability in scientific research.  more » « less
Award ID(s):
1840218
PAR ID:
10111664
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Scientific data, along with its analysis, accuracy, completeness, and reproducibility, plays a vital role in advancing science and engineering. Open Science Chain (OSC) provides a Cyberinfrastructure platform, built using distributed ledger technologies, where verification information about scientific dataset is stored and managed in a consortium blockchain. Researchers have the ability to independently verify the authenticity of scientific results using the information stored with OSC. Researchers can also build research workflows by linking data entries in the ledger and external repositories such as GitHub that will allow for detailed provenance tracking. OSC enables answers to questions such as: how can we ensure research integrity when different research groups share and work on the same datasets across the world? Is it possible to enable quick verification of the exact data sets that were used for particular published research? Can we check the provenance of the data used in the research? In this poster, we highlight our work in building a secure, scalable architecture for OSC including developing a security module for storing identities that can be used by the researchers of science gateways communities to increase the confidence of their scientific results. 
    more » « less
  2. Abstract When the scientific dataset evolves or is reused in workflows creating derived datasets, the integrity of the dataset with its metadata information, including provenance, needs to be securely preserved while providing assurances that they are not accidentally or maliciously altered during the process. Providing a secure method to efficiently share and verify the data as well as metadata is essential for the reuse of the scientific data. The National Science Foundation (NSF) funded Open Science Chain (OSC) utilizes consortium blockchain to provide a cyberinfrastructure solution to maintain integrity of the provenance metadata for published datasets and provides a way to perform independent verification of the dataset while promoting reuse and reproducibility. The NSF- and National Institutes of Health (NIH)-funded Neuroscience Gateway (NSG) provides a freely available web portal that allows neuroscience researchers to execute computational data analysis pipeline on high performance computing resources. Combined, the OSC and NSG platforms form an efficient, integrated framework to automatically and securely preserve and verify the integrity of the artifacts used in research workflows while using the NSG platform. This paper presents the results of the first study that integrates OSC–NSG frameworks to track the provenance of neurophysiological signal data analysis to study brain network dynamics using the Neuro-Integrative Connectivity tool, which is deployed in the NSG platform. Database URL: https://www.opensciencechain.org. 
    more » « less
  3. null (Ed.)
    Scientific data, its analysis, accuracy, completeness, and reproducibility play a vital role in advancing science and engineering. Open Science Chain (OSC) is a cyberinfrastructure platform built using the Hyperledger Fabric (HLF) blockchain technology to address issues related to data reproducibility and accountability in scientific research. OSC preserves the integrity of research datasets and enables different research groups to share datasets with the integrity information. Additionally, it enables quick verification of the exact datasets that were used for a particular published research and tracks its provenance. In this paper, we describe OSC’s command line utility that will preserve the integrity of research datasets from within the researchers’ environment or from remote systems such as HPC resources or campus clusters used for research. The Python-based command line utility can be seamlessly integrated within research workflows and provides an easy way to preserve the integrity of research data in OSC blockchain platform. 
    more » « less
  4. Researchers collaborating from different locations need a method to capture and store scientific workflow provenance that guarantees provenance integrity and reproducibility. As modern science is moving towards greater data accessibility, researchers also need a platform for open access data sharing. We propose SciLedger, a blockchain-based platform that provides secure, trustworthy storage for scientific workflow provenance to reduce research fabrication and falsification. SciLedger utilizes a novel invalidation mechanism that only invalidates necessary provenance records. SciLedger also allows for workflows with complex structures to be stored on a single blockchain so that researchers can utilize existing data in their scientific workflows by branching from and merging existing workflows. Our experimental results show that SciLedger provides an able solution for maintaining academic integrity and research flexibility within scientific workflows. 
    more » « less
  5. Provenance metadata describing the source or origin of data is critical to verify and validate results of scientific experiments. Indeed, reproducibility of scientific studies is rapidly gaining significant attention in the research community, for example biomedical and healthcare research. To address this challenge in the biomedical research domain, we have developed the Provenance for Clinical and Healthcare Research (ProvCaRe) using World Wide Web Consortium (W3C) PROV specifications, including the PROV Ontology (PROV-O). In the ProvCaRe project, we are extending PROV-O to create a formal model of provenance information that is necessary for scientific reproducibility and replication in biomedical research. However, there are several challenges associated with the development of the ProvCaRe ontology, including: (1) Ontology engineering: modeling all biomedical provenance-related terms in an ontology has undefined scope and is not feasible before the release of the ontology; (2) Redundancy: there are a large number of existing biomedical ontologies that already model relevant biomedical terms; and (3) Ontology maintenance: adding or deleting terms from a large ontology is error prone and it will be difficult to maintain the ontology over time. Therefore, in contrast to modeling all classes and properties in an ontology before deployment (also called precoordination), we propose the “ProvCaRe Compositional Grammar Syntax” to model ontology classes on-demand (also called postcoordination). The compositional grammar syntax allows us to re-use existing biomedical ontology classes and compose provenance-specific terms that extend PROV-O classes and properties. We demonstrate the application of this approach in the ProvCaRe ontology and the use of the ontology in the development of the ProvCaRe knowledgebase that consists of more than 38 million provenance triples automatically extracted from 384,802 published research articles using a text processing workflow. 
    more » « less