skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Title: A cell topography-based mechanism for ligand discrimination by the T cell receptor
The T cell receptor (TCR) initiates the elimination of pathogens and tumors by T cells. To avoid damage to the host, the receptor must be capable of discriminating between wild-type and mutated self and nonself peptide ligands presented by host cells. Exactly how the TCR does this is unknown. In resting T cells, the TCR is largely unphosphorylated due to the dominance of phosphatases over the kinases expressed at the cell surface. However, when agonist peptides are presented to the TCR by major histocompatibility complex proteins expressed by antigen-presenting cells (APCs), very fast receptor triggering, i.e., TCR phosphorylation, occurs. Recent work suggests that this depends on the local exclusion of the phosphatases from regions of contact of the T cells with the APCs. Here, we developed and tested a quantitative treatment of receptor triggering reliant only on TCR dwell time in phosphatase-depleted cell contacts constrained in area by cell topography. Using the model and experimentally derived parameters, we found that ligand discrimination likely depends crucially on individual contacts being ∼200 nm in radius, matching the dimensions of the surface protrusions used by T cells to interrogate their targets. The model not only correctly predicted the relative signaling potencies of known agonists and nonagonists but also achieved this in the absence of kinetic proofreading. Our work provides a simple, quantitative, and predictive molecular framework for understanding why TCR triggering is so selective and fast and reveals that, for some receptors, cell topography likely influences signaling outcomes.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Page Range / eLocation ID:
14002 to 14010
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lavrik, Inna (Ed.)

    T cells form transient cell-to-cell contacts with antigen presenting cells (APCs) to facilitate surface interrogation by membrane bound T cell receptors (TCRs). Upon recognition of molecular signatures (antigen) of pathogen, T cells may initiate an adaptive immune response. The duration of the T cell/APC contact is observed to vary widely, yet it is unclear what constructive role, if any, such variations might play in immune signaling. Modeling efforts describing antigen discrimination often focus on steady-state approximations and do not account for the transient nature of cellular contacts. Within the framework of a kinetic proofreading (KP) mechanism, we develop a stochasticFirst Receptor Activation Model(FRAM) describing the likelihood that a productive immune signal is produced before the expiry of the contact. Through the use of extreme statistics, we characterize the probability that the first TCR triggering is induced by a rare agonist antigen and not by that of an abundant self-antigen. We show that defining positive immune outcomes as resilience to extreme statistics and sensitivity to rare events mitigates classic tradeoffs associated with KP. By choosing a sufficient number of KP steps, our model is able to yield single agonist sensitivity whilst remaining non-reactive to large populations of self antigen, even when self and agonist antigen are similar in dissociation rate to the TCR but differ largely in expression. Additionally, our model achieves high levels of accuracy even when agonist positive APCs encounters are rare. Finally, we discuss potential biological costs associated with high classification accuracy, particularly in challenging T cell environments.

    more » « less
  2. Protein–protein binding domains are critical in signaling networks. Src homology 2 (SH2) domains are binding domains that interact with sequences containing phosphorylated tyrosines. A subset of SH2 domain–containing proteins has tandem domains, which are thought to enhance binding affinity and specificity. However, a trade-off exists between long-lived binding and the ability to rapidly reverse signaling, which is a critical requirement of noise-filtering mechanisms such as kinetic proofreading. Here, we use modeling to show that the unbinding rate of tandem, but not single, SH2 domains can be accelerated by phosphatases. Using surface plasmon resonance, we show that the phosphatase CD45 can accelerate the unbinding rate of zeta chain–associated protein kinase 70 (ZAP70), a tandem SH2 domain–containing kinase, from biphosphorylated peptides from the T cell receptor (TCR). An important functional prediction of accelerated unbinding is that the intracellular ZAP70–TCR half-life in T cells will not be fixed but rather, dependent on the extracellular TCR–antigen half-life, and we show that this is the case in both cell lines and primary T cells. The work highlights that tandem SH2 domains can break the trade-off between signal fidelity (requiring long half-life) and signal reversibility (requiring short half-life), which is a key requirement for T cell antigen discrimination mediated by kinetic proofreading. 
    more » « less
  3. Abstract

    Autologous cell therapy depends on T lymphocyte expansion efficiency and is hindered by suboptimal interactions between T cell receptors (TCR) and peptide‐MHC molecules. Various artificial antigen presenting cell systems that enhance these interactions are often labor‐intensive, fabrication costly, highly variable, and potentially unscalable toward clinical setting. Here, 3D centrifugation‐enabled priming of T cell immune‐synapse junctions is performed to generate tight T cell–Dynabead aggregates at a rate 200‐fold faster than that of conventional 24‐h bulk shaking. Furthermore, by forming T cell–Dynabead aggregates in the starting culture, two‐ to sixfold greater T cell expansion is achieved over conventional T cell expansion for cancer patient‐derived primary T cells while limiting over‐activation. Creating 3D T cell–Dynabead aggregates as the “booster” material enables highly efficient polyclonal T cell expansion without the need for complex surface modification of artificial antigen‐presenting cells (APCs). This method can be modularly adapted to existing T cell expansion processes for various applications, including adoptive cell therapies (ACTs).

    more » « less
  4. Abstract Background

    Emerging RNA viruses that target the central nervous system (CNS) lead to cognitive sequelae in survivors. Studies in humans and mice infected with West Nile virus (WNV), a re-emerging RNA virus associated with learning and memory deficits, revealed microglial-mediated synapse elimination within the hippocampus. Moreover, CNS-resident memory T (TRM) cells activate microglia, limiting synapse recovery and inducing spatial learning defects in WNV-recovered mice. The signals involved in T cell-microglia interactions are unknown.


    Here, we examined immune cells within the murine WNV-recovered forebrain using single-cell RNA sequencing to identify putative ligand-receptor pairs involved in intercellular communication between T cells and microglia. Clustering and differential gene analyses were followed by protein validation and genetic and antibody-based approaches utilizing an established murine model of WNV recovery in which microglia and complement promote ongoing hippocampal synaptic loss.


    Profiling of host transcriptome immune cells at 25 days post-infection in mice revealed a shift in forebrain homeostatic microglia to activated subpopulations with transcriptional signatures that have previously been observed in studies of neurodegenerative diseases. Importantly, CXCL16/CXCR6, a chemokine signaling pathway involved in TRM cell biology, was identified as critically regulating CXCR6 expressing CD8+TRM cell numbers within the WNV-recovered forebrain. We demonstrate that CXCL16 is highly expressed by all myeloid cells, and its unique receptor, CXCR6, is highly expressed on all CD8+T cells. Using genetic and pharmacological approaches, we demonstrate that CXCL16/CXCR6 not only is required for the maintenance of WNV-specific CD8 TRM cells in the post-infectious CNS, but also contributes to their expression of TRM cell markers. Moreover, CXCR6+CD8+T cells are required for glial activation and ongoing synapse elimination.


    We provide a comprehensive assessment of the role of CXCL16/CXCR6 as an interaction link between microglia and CD8+T cells that maintains forebrain TRM cells, microglial and astrocyte activation, and ongoing synapse elimination in virally recovered animals. We also show that therapeutic targeting of CXCL16 in mice during recovery may reduce CNS CD8+TRM cells.

    more » « less
  5. Abstract Glycerol monolaurate (GML), a naturally occurring monoglyceride, is widely used commercially for its antimicrobial properties. Interestingly, several studies have shown that GML not only has antimicrobial properties but is also an anti-inflammatory agent. GML inhibits peripheral blood mononuclear cell proliferation and inhibits T cell receptor (TCR)-induced signaling events. In this study, we perform an extensive structure activity relationship analysis to investigate the structural components of GML necessary for its suppression of human T cell activation. Human T cells were treated with analogs of GML, differing in acyl chain length, head group, linkage of acyl chain, and number of laurate groups. Treated cells were then tested for changes in membrane dynamics, LAT clustering, calcium signaling, and cytokine production. We found that an acyl chain with 12–14 carbons, a polar head group, an ester linkage, and a single laurate group at any position are all necessary for GML to inhibit protein clustering, calcium signaling, and cytokine production. Removing the glycerol head group or replacing the ester linkage with a nitrogen prevented derivative-mediated inhibition of protein cluster formation and calcium signaling, while still inhibiting TCR-induced cytokine production. These findings expand our current understanding of the mechanisms of action of GML and the of GML needed to function as a novel immunosuppressant. 
    more » « less