skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

This content will become publicly available on December 1, 2024

Title: 3D Centrifugation‐Enabled Priming of Synaptic Activation Promotes Primary T Cell Expansion

Autologous cell therapy depends on T lymphocyte expansion efficiency and is hindered by suboptimal interactions between T cell receptors (TCR) and peptide‐MHC molecules. Various artificial antigen presenting cell systems that enhance these interactions are often labor‐intensive, fabrication costly, highly variable, and potentially unscalable toward clinical setting. Here, 3D centrifugation‐enabled priming of T cell immune‐synapse junctions is performed to generate tight T cell–Dynabead aggregates at a rate 200‐fold faster than that of conventional 24‐h bulk shaking. Furthermore, by forming T cell–Dynabead aggregates in the starting culture, two‐ to sixfold greater T cell expansion is achieved over conventional T cell expansion for cancer patient‐derived primary T cells while limiting over‐activation. Creating 3D T cell–Dynabead aggregates as the “booster” material enables highly efficient polyclonal T cell expansion without the need for complex surface modification of artificial antigen‐presenting cells (APCs). This method can be modularly adapted to existing T cell expansion processes for various applications, including adoptive cell therapies (ACTs).

more » « less
Award ID(s):
1841509 1841473
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Advanced Science News
Date Published:
Journal Name:
Advanced Therapeutics
Subject(s) / Keyword(s):
["adoptive cell therapy (ACT), high-throughput mechanobiology, T cell activation,\nT cell expansion, T cell receptor (TCR)"]
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Antigen‐presenting cells (APCs), such as dendritic cells and macrophages, have a unique ability to survey the body and present information to T cells via peptide‐loaded major histocompatibility complexes (signal 1). This presentation, along with a co‐stimulatory signal (signal 2), leads to activation and subsequent expansion of T cells. This process can be harnessed and utilized for therapeutic applications, but the use of patient‐derived APCs can be complex and inefficient. Alternatively, artificial APCs (aAPCs) provide a simplified method to achieve T cell activation by presenting the two necessary stimulatory signals. This protocol describes the utilization of magnetic nanoparticles and stimulatory proteins to create aAPCs that can be employed for activating and expanding antigen‐specific T cells for both basic and translational immunology and immunotherapy studies. © 2024 Wiley Periodicals LLC.

    Basic Protocol 1: Protein and particle modification for aAPC fabrication

    Basic Protocol 2: aAPC validation by immunolabeling of conjugated protein

    Support Protocol 1: Quantification of aAPC stock concentration

    Basic Protocol 3: Determination of aAPC usage for murine CD8+T cell activation

    Support Protocol 2: Isolation of murine CD8+T cells

    more » « less
  2. Abstract

    Biomaterial properties that modulate T cell activation, growth, and differentiation are of significant interest in the field of cellular immunotherapy manufacturing. In this work, a new platform technology that allows for the modulation of various activation particle design parameters important for polyclonal T cell activation is presented. Artificial antigen presenting cells (aAPCs) are successfully created using supported lipid bilayers on various cell‐templated silica microparticles with defined membrane fluidity and stimulating antibody density. This panel of aAPCs is used to probe the importance of activation particle shape, size, membrane fluidity, and stimulation antibody density on T cell outgrowth and differentiation. All aAPC formulations are able to stimulate T cell growth, and preferentially promote CD8+T cell growth over CD4+T cell growth when compared to commercially available pendant antibody‐conjugated particles. T cells cultured with HeLa‐ and red blood cell–templated aAPCs have a less‐differentiated and less‐exhausted phenotype than those cultured with spherical aAPCs with matched membrane coatings when cultured for 14 days. These results support continued exploration of silica‐supported lipid bilayers as an aAPC platform.

    more » « less
  3. Abstract

    Cancer immunotherapies have reshaped the paradigm for cancer treatment over the past decade. Among them, therapeutic cancer vaccines that aim to modulate antigen‐presenting cells and subsequent T cell priming processes are among the first FDA‐approved cancer immunotherapies. However, despite showing benign safety profiles and the capability to generate antigen‐specific humoral and cellular responses, cancer vaccines have been limited by the modest therapeutic efficacy, especially for immunologically cold solid tumors. One key challenge lies in the identification of tumor‐specific antigens, which involves a costly and lengthy process of tumor cell isolation, DNA/RNA extraction, sequencing, mutation analysis, epitope prediction, peptide synthesis, and antigen screening. To address these issues, in situ cancer vaccines have been actively pursued to generate endogenous antigens directly from tumors and utilize the generated tumor antigens to elicit potent cytotoxic T lymphocyte (CTL) response. Biomaterials‐based in situ cancer vaccines, in particular, have achieved significant progress by taking advantage of biomaterials that can synergize antigens and adjuvants, troubleshoot delivery issues, home, and manipulate immune cells in situ. This review will provide an overview of biomaterials‐based in situ cancer vaccines, either living or artificial materials, under development or in the clinic, and discuss the design criteria for in situ cancer vaccines.

    more » « less
  4. Abstract

    Cross‐presentation was first observed serendipitously in the 1970s. The importance of it was quickly realized and subsequently attracted great attention from immunologists. Since then, our knowledge of the ability of certain antigen presenting cells to internalize, process, and load exogenous antigens onto MHC‐I molecules to cross‐prime CD8+T cells has increased significantly. Dendritic cells (DCs) are exceptional cross‐presenters, thus making them a great tool to study cross‐presentation but the relative rarity of DCs in circulation and in tissues makes it challenging to isolate sufficient numbers of cells to study this process in vitro. In this paper, we describe in detail two methods to culture DCs from bone‐marrow progenitors and a method to expand the numbers of DCs present in vivo as a source of endogenous bona‐fide cross‐presenting DCs. We also describe methods to assess cross‐presentation by DCs using the activation of primary CD8+T cells as a readout. © 2020 Wiley Periodicals LLC.

    Basic Protocol 1: Isolation of bone marrow progenitor cells

    Basic Protocol 2: In vitro differentiation of dendritic cells with GM‐CSF

    Support Protocol 1: Preparation of conditioned medium from GM‐CSF producing J558L cells

    Basic Protocol 3: In vitro differentiation of dendritic cells with Flt3L

    Support Protocol 2: Preparation of Flt3L containing medium from B16‐Flt3L cells

    Basic Protocol 4: Expansion of cDC1s in vivo for use in ex vivo experiments

    Basic Protocol 5: Characterizing resting and activated dendritic cells

    Basic Protocol 6: Dendritic cell stimulation, antigenic cargo, and fixation

    Support Protocol 3: Preparation of model antigen coated microbeads

    Support Protocol 4: Preparation of apoptotic cells

    Support Protocol 5: Preparation of recombinant bacteria

    Basic Protocol 7: Immunocytochemistry immunofluorescence (ICC/IF)

    Support Protocol 6: Preparation of Alcian blue‐coated coverslips

    Basic Protocol 8: CD8+T cell activation to assess cross‐presentation

    Support Protocol 7: Isolation and labeling of CD8+T cells with CFSE

    more » « less
  5. Abstract

    This report examines how sensing of substrate topography can be used to modulate T cell activation, a key coordinating step in the adaptive immune response. Inspired by the native T cell–antigen presenting cell interface, micrometer scale pits with varying depth are fabricated into planar substrates. Primary CD4+T cells extend actin‐rich protrusions into the micropits. T cell activation, reflected in secretion of cytokines interleukin‐2 and interferon gamma, is sensitive to the micropit depth. Surprisingly, arrays of micropits with 4 μm depth enhance activation compared to flat substrates but deeper micropits are less effective at increasing cell response, revealing a biphasic dependence in activation as a function of feature dimensions. Inhibition of cell contractility abrogates the enhanced activation associated with the micropits. In conclusion, this report demonstrates that the 3D, microscale topography can be used to enhance T cell activation, an ability that most directly can be used to improve production of these cells for immunotherapy.

    more » « less