We develop an algebraic framework for sequential data assimilation of partially observed dynamical systems. In this framework, Bayesian data assimilation is embedded in a nonabelian operator algebra, which provides a representation of observables by multiplication operators and probability densities by density operators (quantum states). In the algebraic approach, the forecast step of data assimilation is represented by a quantum operation induced by the Koopman operator of the dynamical system. Moreover, the analysis step is described by a quantum effect, which generalizes the Bayesian observational update rule. Projecting this formulation to finite-dimensional matrix algebras leads to computational schemes that are i) automatically positivity-preserving and ii) amenable to consistent data-driven approximation using kernel methods for machine learning. Moreover, these methods are natural candidates for implementation on quantum computers. Applications to the Lorenz 96 multiscale system and the El Niño Southern Oscillation in a climate model show promising results in terms of forecast skill and uncertainty quantification.
more »
« less
A quantum mechanical approach for data assimilation in climate dynamics
A framework for data assimilation in climate dynamics is presented, combining aspects of quantum mechanics, Koopman operator theory, and kernel methods for machine learning. This approach adapts the formalism of quantum dynamics and measurement to perform data assimilation (filtering), using the Koopman operator governing the evolution of observables as an analog of the Heisenberg operator in quantum mechanics, and a quantum mechanical density operator to represent the data assimilation state. The framework is implemented in a fully empirical, data-driven manner by representing the evolution and measurement operators via matrices in a basis learned from time-ordered observations. Applications to data assimilation of the Nino 3.4 index for the El Nino Southern Oscillation (ENSO) in a comprehensive climate model show promising results.
more »
« less
- Award ID(s):
- 1842538
- PAR ID:
- 10111830
- Date Published:
- Journal Name:
- International Conference on Machine Learning Workshop on "Climate Change: How Can AI Help?"
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this work, we propose the integration of Koopman operator methodology with Lyapunov‐based model predictive control (LMPC) for stabilization of nonlinear systems. The Koopman operator enables global linear representations of nonlinear dynamical systems. The basic idea is to transform the nonlinear dynamics into a higher dimensional space using a set of observable functions whose evolution is governed by the linear but infinite dimensional Koopman operator. In practice, it is numerically approximated and therefore the tightness of these linear representations cannot be guaranteed which may lead to unstable closed‐loop designs. To address this issue, we integrate the Koopman linear predictors in an LMPC framework which guarantees controller feasibility and closed‐loop stability. Moreover, the proposed design results in a standard convex optimization problem which is computationally attractive compared to a nonconvex problem encountered when the original nonlinear model is used. We illustrate the application of this methodology on a chemical process example.more » « less
-
null (Ed.)Koopman decomposition is a nonlinear generalization of eigen-decomposition, and is being increasingly utilized in the analysis of spatio-temporal dynamics. Well-known techniques such as the dynamic mode decomposition (DMD) and its linear variants provide approximations to the Koopman operator, and have been applied extensively in many fluid dynamic problems. Despite being endowed with a richer dictionary of nonlinear observables, nonlinear variants of the DMD, such as extended/kernel dynamic mode decomposition (EDMD/KDMD) are seldom applied to large-scale problems primarily due to the difficulty of discerning the Koopman-invariant subspace from thousands of resulting Koopman eigenmodes. To address this issue, we propose a framework based on a multi-task feature learning to extract the most informative Koopman-invariant subspace by removing redundant and spurious Koopman triplets. In particular, we develop a pruning procedure that penalizes departure from linear evolution. These algorithms can be viewed as sparsity-promoting extensions of EDMD/KDMD. Furthermore, we extend KDMD to a continuous-time setting and show a relationship between the present algorithm, sparsity-promoting DMD and an empirical criterion from the viewpoint of non-convex optimization. The effectiveness of our algorithm is demonstrated on examples ranging from simple dynamical systems to two-dimensional cylinder wake flows at different Reynolds numbers and a three-dimensional turbulent ship-airwake flow. The latter two problems are designed such that very strong nonlinear transients are present, thus requiring an accurate approximation of the Koopman operator. Underlying physical mechanisms are analysed, with an emphasis on characterizing transient dynamics. The results are compared with existing theoretical expositions and numerical approximations.more » « less
-
This paper presents an active learning strategy for robotic systems that takes into account task information, enables fast learning, and allows control to be readily synthesized by taking advantage of the Koopman operator representation. We first motivate the use of representing nonlinear systems as linear Koopman operator systems by illustrating the improved model-based control performance with an actuated Van der Pol system. Information-theoretic methods are then applied to the Koopman operator formulation of dynamical systems where we derive a controller for active learning of robot dynamics. The active learning controller is shown to increase the rate of information about the Koopman operator. In addition, our active learning controller can readily incorporate policies built on the Koopman dynamics, enabling the benefits of fast active learning and improved control. Results using a quadcopter illustrate single-execution active learning and stabilization capabilities during free-fall. The results for active learning are extended for automating Koopman observables and we implement our method on real robotic systems.more » « less
-
This paper presents a data-driven framework to discover underlying dynamics on a scaled F1TENTH vehicle using the Koopman operator linear predictor. Traditionally, a range of white, gray, or black-box models are used to develop controllers for vehicle path tracking. However, these models are constrained to either linearized operational domains, unable to handle significant variability or lose explainability through end-2-end operational settings. The Koopman Extended Dynamic Mode Decomposition (EDMD) linear predictor seeks to utilize data-driven model learning whilst providing benefits like explainability, model analysis and the ability to utilize linear model-based control techniques. Consider a trajectory-tracking problem for our scaled vehicle platform. We collect pose measurements of our F1TENTH car undergoing standard vehicle dynamics benchmark maneuvers with an OptiTrack indoor localization system. Utilizing these uniformly spaced temporal snapshots of the states and control inputs, a data-driven Koopman EDMD model is identified. This model serves as a linear predictor for state propagation, upon which an MPC feedback law is designed to enable trajectory tracking. The prediction and control capabilities of our framework are highlighted through real-time deployment on our scaled vehicle.more » « less