The modeling of nonlinear dynamics based on Koopman operator theory, originally applicable only to autonomous systems with no control, is extended to nonautonomous control system without approximation of the input matrix. Prevailing methods using a least square estimate of the input matrix may result in an erroneous input matrix, misinforming the controller. Here, a new method for constructing a Koopman model that yields the exact input matrix is presented. A set of state variables are introduced so that the control inputs are linearly involved in the dynamics of actuators. With these variables, a lifted linear model with the exact input matrix, called a Control-Coherent Koopman Model, is constructed by superposing control input terms, which are linear in local actuator dynamics, to the Koopman operator of the associated autonomous nonlinear system. As an example, the proposed method is applied to multi degree-of-freedom robotic arms, which are controlled with Model Predictive Control (MPC). It is demonstrated that the prevailing Dynamic Mode Decomposition with Control (DMDc) using an approximate input matrix does not provide a satisfactory result, while the Control-Coherent Koopman Model performs well with the correct input matrix, even performing better than the bilinear formulation of the Koopman operator.
more »
« less
Active Learning of Dynamics for Data-Driven Control Using Koopman Operators
This paper presents an active learning strategy for robotic systems that takes into account task information, enables fast learning, and allows control to be readily synthesized by taking advantage of the Koopman operator representation. We first motivate the use of representing nonlinear systems as linear Koopman operator systems by illustrating the improved model-based control performance with an actuated Van der Pol system. Information-theoretic methods are then applied to the Koopman operator formulation of dynamical systems where we derive a controller for active learning of robot dynamics. The active learning controller is shown to increase the rate of information about the Koopman operator. In addition, our active learning controller can readily incorporate policies built on the Koopman dynamics, enabling the benefits of fast active learning and improved control. Results using a quadcopter illustrate single-execution active learning and stabilization capabilities during free-fall. The results for active learning are extended for automating Koopman observables and we implement our method on real robotic systems.
more »
« less
- Award ID(s):
- 1837515
- PAR ID:
- 10109564
- Date Published:
- Journal Name:
- IEEE Transactions on Robotics
- ISSN:
- 1552-3098
- Page Range / eLocation ID:
- 1 to 13
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents a data-driven methodology for linear embedding of nonlinear systems. Utilizing structural knowledge of general nonlinear dynamics, the authors exploit the Koopman operator to develop a systematic, data-driven approach for constructing a linear representation in terms of higher order derivatives of the underlying nonlinear dynamics. With the linear representation, the nonlinear system is then controlled with an LQR feedback policy, the gains of which need to be calculated only once. As a result, the approach enables fast control synthesis. We demonstrate the efficacy of the approach with simulations and experimental results on the modeling and control of a tail-actuated robotic fish and show that the proposed policy is comparable to backstepping control. To the best of our knowledge, this is the first experimental validation of Koopman-based LQR control.more » « less
-
null (Ed.)This paper presents a generalizable methodology for data-driven identification of nonlinear dynamics that bounds the model error in terms of the prediction horizon and the magnitude of the derivatives of the system states. Using higher order derivatives of general nonlinear dynamics that need not be known, we construct a Koopman operator-based linear representation and utilize Taylor series accuracy analysis to derive an error bound. The resulting error formula is used to choose the order of derivatives in the basis functions and obtain a data-driven Koopman model using a closed-form expression that can be computed in real time. Using the inverted pendulum system, we illustrate the robustness of the error bounds given noisy measurements of unknown dynamics, where the derivatives are estimated numerically. When combined with control, the Koopman representation of the nonlinear system has marginally better performance than competing nonlinear modeling methods, such as SINDy and NARX. In addition, as a linear model, the Koopman approach lends itself readily to efficient control design tools, such as LQR, whereas the other modeling approaches require nonlinear control methods. The efficacy of the approach is further demonstrated with simulation and experimental results on the control of a tail-actuated robotic fish. Experimental results show that the proposed data-driven control approach outperforms a tuned PID (Proportional Integral Derivative) controller and that updating the data-driven model online significantly improves performance in the presence of unmodeled fluid disturbance. This paper is complemented with a video: https://youtu.be/9 wx0tdDta0.more » « less
-
A global modeling methodology based on Koopman operator theory for the dynamics of rigid bodies that make and break contact is presented. Traditionally, robotic systems that contact with their environment are represented as a system comprised of multiple dynamic equations that are switched depending on the contact state. This switching of governing dynamics has been a challenge in both task planning and control. Here, a Koopman lifting linearization approach is presented to subsume multiple dynamics such that no explicit switching is required for examining the dynamic behaviors across diverse contact states. First, it is shown that contact/noncontact transitions are continuous at a microscopic level. This allows for the application of Koopman operator theory to the class of robotic systems that repeat contact/non-contact transitions. Second, an effective method for finding Koopman operator observables for capturing rapid changes to contact forces is presented. The method is applied to the modeling of dynamic peg insertion where a peg collides against and bounces on the chamfer of the hole. Furthermore, the method is applied to the dynamic modeling of a sliding object subject to complex friction and damping properties. Segmented dynamic equations are unified with the Koopman modeling method.more » « less
-
A global modeling methodology based on Koopman operator theory for the dynamics of rigid bodies that make and break contact is presented. Traditionally, robotic systems that contact with their environment are represented as a system comprised of multiple dynamic equations that are switched depending on the contact state. This switching of governing dynamics has been a challenge in both task planning and control. Here, a Koopman lifting linearization approach is presented to subsume multiple dynamics such that no explicit switching is required for examining the dynamic behaviors across diverse contact states. First, it is shown that contact/noncontact transitions are continuous at a microscopic level. This allows for the application of Koopman operator theory to the class of robotic systems that repeat contact/non-contact transitions. Second, an effective method for finding Koopman operator observables for capturing rapid changes to contact forces is presented. The method is applied to the modeling of dynamic peg insertion where a peg collides against and bounces on the chamfer of the hole. Furthermore, the method is applied to the dynamic modeling of a sliding object subject to complex friction and damping properties. Segmented dynamic equations are unified with the Koopman modeling method.more » « less
An official website of the United States government

