An enormous reserve of information about the subglacial bedrock, tectonic and topographic evolution of Marie Byrd Land (MBL) exists within glaciomarine sediments of the Amundsen Sea shelf, slope and deep sea, and MBL marine shelf. Investigators of the NSF ICI-Hot and NSF Linchpin projects partnered with Arizona Laserchron Center to provide course-based undergraduate research experiences (CUREs) for from groups who do not ordinarily find access points to Antarctic science. Our courses enlist BIPOC and gender-expansive undergraduates in studies of ice-rafted debris (IRD) and bedrock samples, in order to impart skills, train in the use of research instrumentation, help students to develop confidence in their scientific abilities, and collaboratively address WAIS research questions at an early academic stage. CUREs afford benefits to graduate researchers and postdoctoral scientists, also, who join in as instructional faculty: CUREs allow GRs and PDs to engage in teaching that closely ties to their active research, yet provides practical experience to strengthen the academic portfolio (Cascella & Jez, 2018). Team members also develop art-science initiatives that engage students and community members who may not ordinarily engage with science, forging connections that make science relatable. Re-casting science topics through art centers personal connections and humanizes science, to promotemore »
Astro2020 APC White Paper: Elevating the Role of Software as a Product of the Research Enterprise
Software is a critical part of modern research, and yet there are insufficient mechanisms in the scholarly ecosystem to acknowledge, cite, and measure the impact of research software. The majority of academic fields rely on a one-dimensional credit model whereby academic articles (and their associated citations) are the dominant factor in the success of a researcher's career. In the petabyte era of astronomical science, citing software and measuring its impact enables academia to retain and reward researchers that make significant software contributions. These highly skilled researchers must be retained to maximize the scientific return from petabyte-scale datasets. Evolving beyond the one-dimensional credit model requires overcoming several key challenges, including the current scholarly ecosystem and scientific culture issues. This white paper will present these challenges and suggest practical solutions for elevating the role of software as a product of the research enterprise.
- Authors:
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Award ID(s):
- 1743747
- Publication Date:
- NSF-PAR ID:
- 10111875
- Journal Name:
- APC
- ISSN:
- 2257-8587
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
There is a critical need for more students with engineering and computer science majors to enter into, persist in, and graduate from four-year postsecondary institutions. Increasing the diversity of the workforce by inclusive practices in engineering and science is also a profound identified need. According to national statistics, the largest groups of underrepresented minority students in engineering and science attend U.S. public higher education institutions. Most often, a large proportion of these students come to colleges and universities with unique challenges and needs, and are more likely to be first in their family to attend college. In response to these needs, engineering education researchers and practitioners have developed, implemented and assessed interventions to provide support and help students succeed in college, particularly in their first year. These interventions typically target relatively small cohorts of students and can be managed by a small number of faculty and staff. In this paper, we report on “work in progress” research in a large-scale, first-year engineering and computer science intervention program at a public, comprehensive university using multivariate comparative statistical approaches. Large-scale intervention programs are especially relevant to minority serving institutions that prepare growing numbers of students who are first in their family tomore »
-
Obeid, Iyad ; Picone, Joseph ; Selesnick, Ivan (Ed.)The Neural Engineering Data Consortium (NEDC) is developing a large open source database of high-resolution digital pathology images known as the Temple University Digital Pathology Corpus (TUDP) [1]. Our long-term goal is to release one million images. We expect to release the first 100,000 image corpus by December 2020. The data is being acquired at the Department of Pathology at Temple University Hospital (TUH) using a Leica Biosystems Aperio AT2 scanner [2] and consists entirely of clinical pathology images. More information about the data and the project can be found in Shawki et al. [3]. We currently have a National Science Foundation (NSF) planning grant [4] to explore how best the community can leverage this resource. One goal of this poster presentation is to stimulate community-wide discussions about this project and determine how this valuable resource can best meet the needs of the public. The computing infrastructure required to support this database is extensive [5] and includes two HIPAA-secure computer networks, dual petabyte file servers, and Aperio’s eSlide Manager (eSM) software [6]. We currently have digitized over 50,000 slides from 2,846 patients and 2,942 clinical cases. There is an average of 12.4 slides per patient and 10.5 slides per casemore »
-
Science policy makers are looking for approaches to increase the extent of collaboration in the production of scientific software, looking to open collaborations in open source software for inspiration. We examine the software ecosystem surrounding BLAST, a key bioinformatics tool, identifying outside improvements and interviewing their authors. We find that academic credit is a powerful motivator for the production and revealing of improvements. Yet surprisingly, we also find that improvements motivated by academic credit are less likely to be integrated than those with other motivations, including financial gain. We argue that this is because integration makes it harder to see who has contributed what and thereby undermines the ability of reputation to function as a reward for collaboration. We consider how open source avoids these issues and conclude with policy approaches to promoting wider collaboration by addressing incentives for integration.
-
A range of regulatory pressures emanating from funding agencies and scholarly journals increasingly encourage researchers to engage in formal data sharing practices. As academic libraries continue to refine their role in supporting researchers in this data sharing space, one particular challenge has been finding new ways to meaningfully engage with campus researchers. Libraries help shape norms and encourage data sharing through education and training, and there has been significant growth in the services these institutions are able to provide and the ways in which library staff are able to collaborate and communicate with researchers. Evidence also suggests that within disciplines, normative pressures and expectations around professional conduct have a significant impact on data sharing behaviors (Kim and Adler 2015; Sigit Sayogo and Pardo 2013; Zenk-Moltgen et al. 2018). Duke University Libraries' Research Data Management program has recently centered part of its outreach strategy on leveraging peer networks and social modeling to encourage and normalize robust data sharing practices among campus researchers. The program has hosted two panel discussions on issues related to data management—specifically, data sharing and research reproducibility. This paper reflects on some lessons learned from these outreach efforts and outlines next steps.