skip to main content

Search for: All records

Award ID contains: 1743747

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The blazar J1924–2914 is a primary Event Horizon Telescope (EHT) calibrator for the Galactic center’s black hole Sagittarius A*. Here we present the first total and linearly polarized intensity images of this source obtained with the unprecedented 20 μ as resolution of the EHT. J1924–2914 is a very compact flat-spectrum radio source with strong optical variability and polarization. In April 2017 the source was observed quasi-simultaneously with the EHT (April 5–11), the Global Millimeter VLBI Array (April 3), and the Very Long Baseline Array (April 28), giving a novel view of the source at four observing frequencies, 230, 86,more »8.7, and 2.3 GHz. These observations probe jet properties from the subparsec to 100 pc scales. We combine the multifrequency images of J1924–2914 to study the source morphology. We find that the jet exhibits a characteristic bending, with a gradual clockwise rotation of the jet projected position angle of about 90° between 2.3 and 230 GHz. Linearly polarized intensity images of J1924–2914 with the extremely fine resolution of the EHT provide evidence for ordered toroidal magnetic fields in the blazar compact core.« less
    Free, publicly-accessible full text available August 1, 2023
  2. The sparse interferometric coverage of the Event Horizon Telescope (EHT) poses a significant challenge for both reconstruction and model fitting of black-hole images. PRIMO is a new principal components analysis-based algorithm for image reconstruction that uses the results of high-fidelity general relativistic, magnetohydrodynamic simulations of low-luminosity accretion flows as a training set. This allows the reconstruction of images that are both consistent with the interferometric data and that live in the space of images that is spanned by the simulations. PRIMO follows Monty Carlo Markov Chains to fit a linear combination of principal components derived from an ensemble of simulatedmore »images to interferometric data. We show that PRIMO can efficiently and accurately reconstruct synthetic EHT data sets for several simulated images, even when the simulation parameters are significantly different from those of the image ensemble that was used to generate the principal components. The resulting reconstructions achieve resolution that is consistent with the performance of the array and do not introduce significant biases in image features such as the diameter of the ring of emission.« less
    Free, publicly-accessible full text available August 1, 2023
  3. ABSTRACT Intermediate-mass black holes (IMBHs, $10^{3\!-\!6} \, {\rm M_\odot }$), are typically found at the centre of dwarf galaxies and might be wandering, thus far undetected, in the Milky Way (MW). We use model spectra for advection-dominated accretion flows to compute the typical fluxes, in a range of frequencies spanning from radio to X-rays, emitted by a putative population of $10^5 \, {\rm M_\odot }$ IMBHs wandering in five realistic volume-weighted MW environments. We predict that $\sim 27{{\ \rm per\ cent}}$ of the wandering IMBHs can be detected in the X-ray with Chandra, $\sim 37{{\ \rm per\ cent}}$ in themore »near-infrared with the Roman Space Telescope, $\sim 49{{\ \rm per\ cent}}$ in the sub-mm with CMB-S4, and $\sim 57{{\ \rm per\ cent}}$ in the radio with ngVLA. We find that the brightest fluxes are emitted by IMBHs passing through molecular clouds or cold neutral medium, where they are always detectable. We propose criteria to facilitate the selection of candidates in multiwavelength surveys. Specifically, we compute the X-ray to optical ratio (αox) and the optical to sub-mm ratio, as a function of the accretion rate of the IMBH. We show that at low rates the sub-mm emission of IMBHs is significantly higher than the optical, UV, and X-ray emission. Finally, we place upper limits on the number N• of these objects in the MW: N• < 2000 and N• < 100, based on our detectability expectations and current lack of detections in molecular clouds and cold neutral medium, respectively. These predictions will guide future searches of IMBHs in the MW, which will be instrumental to understanding their demographics and evolution.« less
    Free, publicly-accessible full text available July 27, 2023
  4. Free, publicly-accessible full text available July 1, 2023
  5. ABSTRACT Numerical general relativistic radiative magnetohydrodynamic simulations of accretion discs around a stellar-mass black hole with a luminosity above 0.5 of the Eddington value reveal their stratified, elevated vertical structure. We refer to these thermally stable numerical solutions as puffy discs. Above a dense and geometrically thin core of dimensionless thickness h/r ∼ 0.1, crudely resembling a classic thin accretion disc, a puffed-up, geometrically thick layer of lower density is formed. This puffy layer corresponds to h/r ∼ 1.0, with a very limited dependence of the dimensionless thickness on the mass accretion rate. We discuss the observational properties of puffymore »discs, particularly the geometrical obscuration of the inner disc by the elevated puffy region at higher observing inclinations, and collimation of the radiation along the accretion disc spin axis, which may explain the apparent super-Eddington luminosity of some X-ray objects. We also present synthetic spectra of puffy discs, and show that they are qualitatively similar to those of a Comptonized thin disc. We demonstrate that the existing xspec spectral fitting models provide good fits to synthetic observations of puffy discs, but cannot correctly recover the input black hole spin. The puffy region remains optically thick to scattering; in its spectral properties, the puffy disc roughly resembles that of a warm corona sandwiching the disc core. We suggest that puffy discs may correspond to X-ray binary systems of luminosities above 0.3 of the Eddington luminosity in the intermediate spectral states.« less
    Free, publicly-accessible full text available June 9, 2023
  6. Abstract State transitions in black hole X-ray binaries are likely caused by gas evaporation from a thin accretion disk into a hot corona. We present a height-integrated version of this process, which is suitable for analytical and numerical studies. With radius r scaled to Schwarzschild units and coronal mass accretion rate m ̇ c to Eddington units, the results of the model are independent of black hole mass. State transitions should thus be similar in X-ray binaries and an active galactic nucleus. The corona solution consists of two power-law segments separated at a break radius r b ∼ 10 3more »( α /0.3) −2 , where α is the viscosity parameter. Gas evaporates from the disk to the corona for r > r b , and condenses back for r < r b . At r b , m ̇ c reaches its maximum, m ̇ c , max ≈ 0.02 ( α / 0.3 ) 3 . If at r ≫ r b the thin disk accretes with m ̇ d < m ̇ c , max , then the disk evaporates fully before reaching r b , giving the hard state. Otherwise, the disk survives at all radii, giving the thermal state. While the basic model considers only bremsstrahlung cooling and viscous heating, we also discuss a more realistic model that includes Compton cooling and direct coronal heating by energy transport from the disk. Solutions are again independent of black hole mass, and r b remains unchanged. This model predicts strong coronal winds for r > r b , and a T ∼ 5 × 10 8 K Compton-cooled corona for r < r b . Two-temperature effects are ignored, but may be important at small radii.« less
    Free, publicly-accessible full text available June 1, 2023
  7. Abstract The extraordinary physical resolution afforded by the Event Horizon Telescope has opened a window onto the astrophysical phenomena unfolding on horizon scales in two known black holes, M87 * and Sgr A*. However, with this leap in resolution has come a new set of practical complications. Sgr A* exhibits intraday variability that violates the assumptions underlying Earth aperture synthesis, limiting traditional image reconstruction methods to short timescales and data sets with very sparse ( u , v ) coverage. We present a new set of tools to detect and mitigate this variability. We develop a data-driven, model-agnostic procedure tomore »detect and characterize the spatial structure of intraday variability. This method is calibrated against a large set of mock data sets, producing an empirical estimator of the spatial power spectrum of the brightness fluctuations. We present a novel Bayesian noise modeling algorithm that simultaneously reconstructs an average image and statistical measure of the fluctuations about it using a parameterized form for the excess variance in the complex visibilities not otherwise explained by the statistical errors. These methods are validated using a variety of simulated data, including general relativistic magnetohydrodynamic simulations appropriate for Sgr A* and M87 * . We find that the reconstructed source structure and variability are robust to changes in the underlying image model. We apply these methods to the 2017 EHT observations of M87 * , finding evidence for variability across the EHT observing campaign. The variability mitigation strategies presented are widely applicable to very long baseline interferometry observations of variable sources generally, for which they provide a data-informed averaging procedure and natural characterization of inter-epoch image consistency.« less
    Free, publicly-accessible full text available May 1, 2023
  8. Abstract Recent developments in very long baseline interferometry (VLBI) have made it possible for the Event Horizon Telescope (EHT) to resolve the innermost accretion flows of the largest supermassive black holes on the sky. The sparse nature of the EHT’s ( u , v )-coverage presents a challenge when attempting to resolve highly time-variable sources. We demonstrate that the changing ( u , v )-coverage of the EHT can contain regions of time over the course of a single observation that facilitate dynamical imaging. These optimal time regions typically have projected baseline distributions that are approximately angularly isotropic and radiallymore »homogeneous. We derive a metric of coverage quality based on baseline isotropy and density that is capable of ranking array configurations by their ability to produce accurate dynamical reconstructions. We compare this metric to existing metrics in the literature and investigate their utility by performing dynamical reconstructions on synthetic data from simulated EHT observations of sources with simple orbital variability. We then use these results to make recommendations for imaging the 2017 EHT Sgr A* data set.« less
    Free, publicly-accessible full text available May 1, 2023
  9. Abstract We present the first Event Horizon Telescope (EHT) observations of Sagittarius A* (Sgr A*), the Galactic center source associated with a supermassive black hole. These observations were conducted in 2017 using a global interferometric array of eight telescopes operating at a wavelength of λ = 1.3 mm. The EHT data resolve a compact emission region with intrahour variability. A variety of imaging and modeling analyses all support an image that is dominated by a bright, thick ring with a diameter of 51.8 ± 2.3 μ as (68% credible interval). The ring has modest azimuthal brightness asymmetry and a comparativelymore »dim interior. Using a large suite of numerical simulations, we demonstrate that the EHT images of Sgr A* are consistent with the expected appearance of a Kerr black hole with mass ∼4 × 10 6 M ⊙ , which is inferred to exist at this location based on previous infrared observations of individual stellar orbits, as well as maser proper-motion studies. Our model comparisons disfavor scenarios where the black hole is viewed at high inclination ( i > 50°), as well as nonspinning black holes and those with retrograde accretion disks. Our results provide direct evidence for the presence of a supermassive black hole at the center of the Milky Way, and for the first time we connect the predictions from dynamical measurements of stellar orbits on scales of 10 3 –10 5 gravitational radii to event-horizon-scale images and variability. Furthermore, a comparison with the EHT results for the supermassive black hole M87* shows consistency with the predictions of general relativity spanning over three orders of magnitude in central mass.« less
    Free, publicly-accessible full text available May 1, 2023
  10. Abstract We present Event Horizon Telescope (EHT) 1.3 mm measurements of the radio source located at the position of the supermassive black hole Sagittarius A* (Sgr A*), collected during the 2017 April 5–11 campaign. The observations were carried out with eight facilities at six locations across the globe. Novel calibration methods are employed to account for Sgr A*'s flux variability. The majority of the 1.3 mm emission arises from horizon scales, where intrinsic structural source variability is detected on timescales of minutes to hours. The effects of interstellar scattering on the image and its variability are found to be subdominantmore »to intrinsic source structure. The calibrated visibility amplitudes, particularly the locations of the visibility minima, are broadly consistent with a blurred ring with a diameter of ∼50 μ as, as determined in later works in this series. Contemporaneous multiwavelength monitoring of Sgr A* was performed at 22, 43, and 86 GHz and at near-infrared and X-ray wavelengths. Several X-ray flares from Sgr A* are detected by Chandra, one at low significance jointly with Swift on 2017 April 7 and the other at higher significance jointly with NuSTAR on 2017 April 11. The brighter April 11 flare is not observed simultaneously by the EHT but is followed by a significant increase in millimeter flux variability immediately after the X-ray outburst, indicating a likely connection in the emission physics near the event horizon. We compare Sgr A*’s broadband flux during the EHT campaign to its historical spectral energy distribution and find that both the quiescent emission and flare emission are consistent with its long-term behavior.« less
    Free, publicly-accessible full text available May 1, 2023