skip to main content

Search for: All records

Award ID contains: 1743747

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    The present work is devoted to the analysis of the internal structure of relativistic jets under the condition that the velocity of the plasma flow at the jet axis vanishes. It is shown that in spite of the seemingly fundamental difference in the formulation of the problem at the axis, the key properties of the internal structure of such relativistic jets remain the same as for non-zero velocity along the axis. In both cases, at a sufficiently low ambient pressure, a dense core appears near the axis, the radius of which is close to the size of the light cylinder.

    more » « less
    Free, publicly-accessible full text available July 24, 2024
  2. Abstract

    Accretion of magnetized gas on compact astrophysical objects such as black holes (BHs) has been successfully modeled using general relativistic magnetohydrodynamic (GRMHD) simulations. These simulations have largely been performed in the Kerr metric, which describes the spacetime of a vacuum and stationary spinning BH in general relativity (GR). The simulations have revealed important clues to the physics of accretion flows and jets near the BH event horizon and have been used to interpret recent Event Horizon Telescope images of the supermassive BHs M87* and Sgr A*. The GRMHD simulations require the spacetime metric to be given in horizon-penetrating coordinates such that all metric coefficients are regular at the event horizon. Only a few metrics, notably the Kerr metric and its electrically charged spinning analog, the Kerr–Newman metric, are currently available in such coordinates. We report here horizon-penetrating forms of a large class of stationary, axisymmetric, spinning metrics. These can be used to carry out GRMHD simulations of accretion on spinning, nonvacuum BHs and non-BHs within GR, as well as accretion on spinning objects described by non-GR metric theories of gravity.

    more » « less
  3. Abstract

    In the collisionless plasmas of radiatively inefficient accretion flows, heating and acceleration of ions and electrons are not well understood. Recent studies in the gyrokinetic limit revealed the importance of incorporating both the compressive and Alfvénic cascades when calculating the partition of dissipated energy between the plasma species. In this paper, we use a covariant analytic model of the accretion flow to explore the impact of compressive and Alfvénic heating, Coulomb collisions, compressional heating, and radiative cooling on the radial temperature profiles of ions and electrons. We show that, independent of the partition of heat between the plasma species, even a small fraction of turbulent energy dissipated to the electrons makes their temperature scale with a virial profile and the ion-to-electron temperature ratio smaller than in the case of pure Coulomb heating. In contrast, the presence of compressive cascades makes this ratio larger because compressive turbulent energy is channeled primarily into the ions. We calculate the ion-to-electron temperature in the inner accretion flow for a broad range of plasma properties, mass accretion rates, and black hole spins and show that it ranges between 5 ≲Ti/Te≲ 40. We provide a physically motivated expression for this ratio that can be used to calculate observables from simulations of black hole accretion flows for a wide range of conditions.

    more » « less
  4. Abstract

    Observations of the S stars, the cluster of young stars in the inner 0.1 pc of the Galactic center, have been crucial in providing conclusive evidence for a supermassive black hole at the center of our galaxy. Since some of the stars have orbits less than that of a typical human lifetime, it is possible to observe multiple orbits and test the weak-field regime of general relativity. Current calculations of orbits require relatively slow and expensive computations in order to perform numerical integrations for the position and momentum of each star at each observing time. In this paper, we present a computationally efficient, first-order post-Newtonian model for the astrometric and spectroscopic data gathered for the S stars. We find that future, 30 m class telescopes—and potentially even current large telescopes with very high spectroscopic resolution—may be able to detect the Shapiro effect for an S star in the next decade or so.

    more » « less
  5. Abstract

    Fueling and feedback couple supermassive black holes (SMBHs) to their host galaxies across many orders of magnitude in spatial and temporal scales, making this problem notoriously challenging to simulate. We use a multi-zone computational method based on the general relativistic magnetohydrodynamic (GRMHD) code KHARMA that allows us to span 7 orders of magnitude in spatial scale, to simulate accretion onto a non-spinning SMBH from an external medium with a Bondi radius ofRB≈ 2 × 105GM/c2, whereMis the SMBH mass. For the classic idealized Bondi problem, spherical gas accretion without magnetic fields, our simulation results agree very well with the general relativistic analytic solution. Meanwhile, when the accreting gas is magnetized, the SMBH magnetosphere becomes saturated with a strong magnetic field. The density profile varies as ∼r−1rather thanr−3/2and the accretion rateṀis consequently suppressed by over 2 orders of magnitude below the Bondi rateṀB. We find continuous energy feedback from the accretion flow to the external medium at a level of102Ṁc25×105ṀBc2. Energy transport across these widely disparate scales occurs via turbulent convection triggered by magnetic field reconnection near the SMBH. Thus, strong magnetic fields that accumulate on horizon scales transform the flow dynamics far from the SMBH and naturally explain observed extremely low accretion rates compared to the Bondi rate, as well as at least part of the energy feedback.

    more » « less
    Free, publicly-accessible full text available December 1, 2024

    We introduce a new library of 535 194 model images of the supermassive black holes and Event Horizon Telescope (EHT) targets Sgr A* and M87*, computed by performing general relativistic radiative transfer calculations on general relativistic magnetohydrodynamics simulations. Then to infer underlying black hole and accretion flow parameters (spin, inclination, ion-to-electron temperature ratio, and magnetic field polarity), we train a random forest machine learning model on various hand-picked polarimetric observables computed from each image. Our random forest is capable of making meaningful predictions of spin, inclination, and the ion-to-electron temperature ratio, but has more difficulty inferring magnetic field polarity. To disentangle how physical parameters are encoded in different observables, we apply two different metrics to rank the importance of each observable at inferring each physical parameter. Details of the spatially resolved linear polarization morphology stand out as important discriminators between models. Bearing in mind the theoretical limitations and incompleteness of our image library, for the real M87* data, our machinery favours high-spin retrograde models with large ion-to-electron temperature ratios. Due to the time-variable nature of these targets, repeated polarimetric imaging will further improve model inference as the EHT and next-generation (EHT) continue to develop and monitor their targets.

    more » « less

    The Event Horizon Telescope (EHT) collaboration has produced the first resolved images of the supermassive black holes at the centre of our galaxy and at the centre of the elliptical galaxy M87. As both technology and analysis pipelines improve, it will soon become possible to produce spectral index maps of black hole accretion flows on event horizon scales. In this work, we predict spectral index maps of both M87* and Sgr A* by applying the general relativistic radiative transfer (GRRT) code ipole to a suite of general relativistic magnetohydrodynamic (GRMHD) simulations. We analytically show that the spectral index increases with increasing magnetic field strength, electron temperature, and optical depth. Consequently, spectral index maps grow more negative with increasing radius in almost all models, since all of these quantities tend to be maximized near the event horizon. Additionally, photon ring geodesics exhibit more positive spectral indices, since they sample the innermost regions of the accretion flow with the most extreme plasma conditions. Spectral index maps are sensitive to highly uncertain plasma heating prescriptions (the electron temperature and distribution function). However, if our understanding of these aspects of plasma physics can be tightened, even the spatially unresolved spectral index around 230 GHz can be used to discriminate between models. In particular, Standard and Normal Evolution (SANE) flows tend to exhibit more negative spectral indices than Magnetically Arrested Disc (MAD) flows due to differences in the characteristic magnetic field strength and temperature of emitting plasma.

    more » « less

    Understanding the chemical processes during starless core and prestellar core evolution is an important step in understanding the initial stages of star and disc formation. This project is a study of deuterated ammonia, o-NH2D, in the L1251 star-forming region towards Cepheus. Twenty-two dense cores (20 of which are starless or prestellar, and two of which have a protostar), previously identified by p-NH3 (1,1) observations, were targeted with the 12m Arizona Radio Observatory telescope on Kitt Peak. o-NH2D J$_{\rm {K_a} \rm {K_c}}^{\pm } =$$1_{11}^{+} \rightarrow 1_{01}^{-}$ was detected in 13 (59 per cent) of the NH3-detected cores with a median sensitivity of $\sigma _{T_{mb}} = 17$ mK. All cores detected in o-NH2D at this sensitivity have p-NH3 column densities >1014 cm−2. The o-NH2D column densities were calculated using the constant excitation temperature (CTEX) approximation while correcting for the filling fraction of the NH3 source size. The median deuterium fraction was found to be 0.11 (including 3σ upper limits). However, there are no strong, discernible trends in plots of deuterium fraction with any physical or evolutionary variables. If the cores in L1251 have similar initial chemical conditions, then this result is evidence of the cores physically evolving at different rates.

    more » « less

    Intermediate-mass black holes (IMBHs, $10^{3\!-\!6} \, {\rm M_\odot }$), are typically found at the centre of dwarf galaxies and might be wandering, thus far undetected, in the Milky Way (MW). We use model spectra for advection-dominated accretion flows to compute the typical fluxes, in a range of frequencies spanning from radio to X-rays, emitted by a putative population of $10^5 \, {\rm M_\odot }$ IMBHs wandering in five realistic volume-weighted MW environments. We predict that $\sim 27{{\ \rm per\ cent}}$ of the wandering IMBHs can be detected in the X-ray with Chandra, $\sim 37{{\ \rm per\ cent}}$ in the near-infrared with the Roman Space Telescope, $\sim 49{{\ \rm per\ cent}}$ in the sub-mm with CMB-S4, and $\sim 57{{\ \rm per\ cent}}$ in the radio with ngVLA. We find that the brightest fluxes are emitted by IMBHs passing through molecular clouds or cold neutral medium, where they are always detectable. We propose criteria to facilitate the selection of candidates in multiwavelength surveys. Specifically, we compute the X-ray to optical ratio (αox) and the optical to sub-mm ratio, as a function of the accretion rate of the IMBH. We show that at low rates the sub-mm emission of IMBHs is significantly higher than the optical, UV, and X-ray emission. Finally, we place upper limits on the number N• of these objects in the MW: N• < 2000 and N• < 100, based on our detectability expectations and current lack of detections in molecular clouds and cold neutral medium, respectively. These predictions will guide future searches of IMBHs in the MW, which will be instrumental to understanding their demographics and evolution.

    more » « less
  10. Abstract

    The Event Horizon Telescope (EHT) has released analyses of reconstructed images of horizon-scale millimeter emission near the supermassive black hole at the center of the M87 galaxy. Parts of the analyses made use of a large library of synthetic black hole images and spectra, which were produced using numerical general relativistic magnetohydrodynamics fluid simulations and polarized ray tracing. In this article, we describe thePATOKApipeline, which was used to generate the Illinois contribution to the EHT simulation library. We begin by describing the relevant accretion systems and radiative processes. We then describe the details of the three numerical codes we use,iharm,ipole, andigrmonty, paying particular attention to differences between the current generation of the codes and the originally published versions. Finally, we provide a brief overview of simulated data as produced byPATOKAand conclude with a discussion of limitations and future directions.

    more » « less