skip to main content


Title: Making Inspired by Nature: Engaging Preservice Elementary Teachers and Children in Maker-centered learning and Biomimicry
Makerspaces, innovation labs, and creativity spaces are gaining traction in K-12 schools and community centers. This exploratory project, Making Inspired by Nature, brings together the art of making, the disciplined practices of design thinking, and the creative practices of biomimicry to engage preservice teachers and children in building innovative solutions to real-world problems. To achieve this, this project is (a) building and evaluating digital resources and hands-on activities for engaging elementary children in innovation through the application of biomimicry and design thinking in a maker context and (b) evaluating models for deepening pre-service teachers’ pedagogical knowledge for supporting student learning in maker-centered classrooms. This NSF IUSE funded project, just ending year 1 of a 2-year project, was in response to an NSF Dear Colleague Letter calling for EAGER proposals to conduct exploratory work with respect to STEM learning and design thinking.  more » « less
Award ID(s):
1723677
NSF-PAR ID:
10111933
Author(s) / Creator(s):
Date Published:
Journal Name:
ASEE annual conference & exposition proceedings
ISSN:
2153-5868
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This exploratory project, Making Inspired by Nature, brings together the art of making and the creative practices of biomimicry to engage preservice teachers and children in building innovative solutions to real-world problems. To achieve this, this project is (a) building and evaluating digital resources and hands-on activities for engaging elementary children in innovation through the application of biomimicry and design thinking in a maker context and (b) evaluating models for deepening preservice teachers’ pedagogical knowledge for supporting student learning in maker-centered classrooms. Introduction This exploratory project, Making Inspired by Nature, brings together the act of “making” with the innovative practices of biomimicry to engage preservice 
    more » « less
  2. The Maker Partnership Program (MPP) is an NSF-supported project that addresses the critical need for models of professional development (PD) and support that help elementary-level science teachers integrate computer science and computational thinking (CS and CT) into their classroom practices. The MPP aims to foster integration of these disciplines through maker pedagogy and curriculum. The MPP was designed as a research-practice partnership that allows researchers and practitioners to collaborate and iteratively design, implement and test the PD and curriculum. This paper describes the key elements of the MPP and early findings from surveys of teachers and students participating in the program. Our research focuses on learning how to develop teachers’ capacity to integrate CS and CT into elementary-level science instruction; understanding whether and how this integrated instruction promotes deeper student learning of science, CS and CT, as well as interest and engagement in these subjects; and exploring how the model may need to be adapted to fit local contexts. Participating teachers reported gaining knowledge and confidence for implementing the maker curriculum through the PDs. They anticipated that the greatest implementation challenges would be lack of preparation time, inaccessible computer hardware, lack of administrative support, and a lack of CS knowledge. Student survey results show that most participants were interested in CS and science at the beginning of the program. Student responses to questions about their disposition toward collaboration and persistence suggest some room for growth. Student responses to questions about who does CS are consistent with prevalent gender stereotypes (e.g., boys are naturally better than girls at computer programming), particularly among boys. 
    more » « less
  3. The research objective of this NSF-funded study is to explore and understand how open-ended, hands-on making work and activities can reflect student learning trajectories and learning gains in the product-based learning, undergraduate engineering classroom. The aim is to expand understanding of what making learning in the context of engineering design education might be and to illustrate educational pathways within the engineering education curriculum. Making is rooted in constructionism – learning by doing and constructing knowledge through that doing. Aspects of making work and activities that are unique to making that could appear in the engineering classroom or curriculum include: sharing, practical ingenuity, personal investment, playful invention, risk taking, community building and self-directed learning. The main research questions of this work is: How do engineering students learn and apply making? What are the attributes of making in the engineering classroom? Empirical evidence of what making in the engineering classroom looks like, and how it changes over time, and how students conceptualize making through making, designerly, and engineering ways of knowing-doing-acting will come from revisiting and additional qualitative analysis of student project data collected during a product-based learning course engineering design course. To best address the research question, this proposed study proposes multiple qualitative methods to collect and analyze data on engineering students learning making. We aim to triangulate what students think they are learning, what they are being taught, and what students are demonstrating. This work is exploratory in nature. In our approach to understanding making outside of formal engineering education, at events like Maker Faires in the Maker Community, it does seem evident that there is a lot of overlap between a making mindset and a designerly way of knowing or engineering way of knowing. In the sphere of formal engineering education however, making is regularly viewed as lesser than engineering, engineering design without the engineering science or analysis. Making is not yet valued as part of formal engineering education efforts. If making is something that can be connected to beneficial student learning and is additive to the required technical content and provides a means for students to figure out what area of problems they want to tackle in the studies and beyond, it would make for a student-centered making revolution. This study advances the knowledge of the learning pathways of making by capturing empirical evidence of such learning trajectories. This study will advance the currently limited knowledge of learning in the making community and making in the engineering classroom. Initial findings generated during this study describe the learning trajectories of engineers learning making. By examining the engineering student making learning experience through the lens of cognitive science and illustrating empirical making learning trajectories, this work may impact the quality of engineering design teaching. By sharing learning trajectories across multiple communities, we seek to change the conversation by illuminating pathways for a wider array of student makers to become the makers and engineers of the future. 
    more » « less
  4. The research objective of this NSF-funded study is to explore and understand how open-ended, hands-on making work and activities can reflect student learning trajectories and learning gains in the product-based learning, undergraduate engineering classroom. The aim is to expand understanding of what making learning in the context of engineering design education might be and to illustrate educational pathways within the engineering education curriculum. Making is rooted in constructionism – learning by doing and constructing knowledge through that doing. Aspects of making work and activities that are unique to making that could appear in the engineering classroom or curriculum include: sharing, practical ingenuity, personal investment, playful invention, risk taking, community building and self-directed learning. The main research questions of this work is: How do engineering students learn and apply making? What are the attributes of making in the engineering classroom? Empirical evidence of what making in the engineering classroom looks like, and how it changes over time, and how students conceptualize making through making, designerly, and engineering ways of knowing-doing-acting will come from revisiting and additional qualitative analysis of student project data collected during a product-based learning course engineering design course. To best address the research question, this proposed study proposes multiple qualitative methods to collect and analyze data on engineering students learning making. We aim to triangulate what students think they are learning, what they are being taught, and what students are demonstrating. This work is exploratory in nature. In our approach to understanding making outside of formal engineering education, at events like Maker Faires in the Maker Community, it does seem evident that there is a lot of overlap between a making mindset and a designerly way of knowing or engineering way of knowing. In the sphere of formal engineering education however, making is regularly viewed as lesser than engineering, engineering design without the engineering science or analysis. Making is not yet valued as part of formal engineering education efforts. If making is something that can be connected to beneficial student learning and is additive to the required technical content and provides a means for students to figure out what area of problems they want to tackle in the studies and beyond, it would make for a student-centered making revolution. This study advances the knowledge of the learning pathways of making by capturing empirical evidence of such learning trajectories. This study will advance the currently limited knowledge of learning in the making community and making in the engineering classroom. Initial findings generated during this study describe the learning trajectories of engineers learning making. By examining the engineering student making learning experience through the lens of cognitive science and illustrating empirical making learning trajectories, this work may impact the quality of engineering design teaching. By sharing learning trajectories across multiple communities, we seek to change the conversation by illuminating pathways for a wider array of student makers to become the makers and engineers of the future. 
    more » « less
  5. The research objective of this NSF-funded study is to explore and understand how open-ended, hands-on making work and activities can reflect student learning trajectories and learning gains in the product-based learning, undergraduate engineering classroom. The aim is to expand understanding of what making learning in the context of engineering design education might be and to illustrate educational pathways within the engineering education curriculum. Making is rooted in constructionism – learning by doing and constructing knowledge through that doing. Aspects of making work and activities that are unique to making that could appear in the engineering classroom or curriculum include: sharing, practical ingenuity, personal investment, playful invention, risk taking, community building and self-directed learning. The main research questions of this work is: How do engineering students learn and apply making? What are the attributes of making in the engineering classroom? Empirical evidence of what making in the engineering classroom looks like, and how it changes over time, and how students conceptualize making through making, designerly, and engineering ways of knowing-doing-acting will come from revisiting and additional qualitative analysis of student project data collected during a product-based learning course engineering design course. To best address the research question, this proposed study proposes multiple qualitative methods to collect and analyze data on engineering students learning making. We aim to triangulate what students think they are learning, what they are being taught, and what students are demonstrating. This work is exploratory in nature. In our approach to understanding making outside of formal engineering education, at events like Maker Faires in the Maker Community, it does seem evident that there is a lot of overlap between a making mindset and a designerly way of knowing or engineering way of knowing. In the sphere of formal engineering education however, making is regularly viewed as lesser than engineering, engineering design without the engineering science or analysis. Making is not yet valued as part of formal engineering education efforts. If making is something that can be connected to beneficial student learning and is additive to the required technical content and provides a means for students to figure out what area of problems they want to tackle in the studies and beyond, it would make for a student-centered making revolution. This study advances the knowledge of the learning pathways of making by capturing empirical evidence of such learning trajectories. This study will advance the currently limited knowledge of learning in the making community and making in the engineering classroom. Initial findings generated during this study describe the learning trajectories of engineers learning making. By examining the engineering student making learning experience through the lens of cognitive science and illustrating empirical making learning trajectories, this work may impact the quality of engineering design teaching. By sharing learning trajectories across multiple communities, we seek to change the conversation by illuminating pathways for a wider array of student makers to become the makers and engineers of the future. 
    more » « less