skip to main content

Title: Can online self-reports assist in real-time identification of influenza vaccination uptake? A cross-sectional study of influenza vaccine-related tweets in the USA, 2013–2017
Introduction The Centers for Disease Control and Prevention (CDC) spend significant time and resources to track influenza vaccination coverage each influenza season using national surveys. Emerging data from social media provide an alternative solution to surveillance at both national and local levels of influenza vaccination coverage in near real time. Objectives This study aimed to characterise and analyse the vaccinated population from temporal, demographical and geographical perspectives using automatic classification of vaccination-related Twitter data. Methods In this cross-sectional study, we continuously collected tweets containing both influenza-related terms and vaccine-related terms covering four consecutive influenza seasons from 2013 to 2017. We created a machine learning classifier to identify relevant tweets, then evaluated the approach by comparing to data from the CDC’s FluVaxView. We limited our analysis to tweets geolocated within the USA. Results We assessed 1 124 839 tweets. We found strong correlations of 0.799 between monthly Twitter estimates and CDC, with correlations as high as 0.950 in individual influenza seasons. We also found that our approach obtained geographical correlations of 0.387 at the US state level and 0.467 at the regional level. Finally, we found a higher level of influenza vaccine tweets among female users than male users, also consistent more » with the results of CDC surveys on vaccine uptake. Conclusion Significant correlations between Twitter data and CDC data show the potential of using social media for vaccination surveillance. Temporal variability is captured better than geographical and demographical variability. We discuss potential paths forward for leveraging this approach. « less
Authors:
; ; ; ; ; ; ;
Award ID(s):
1657338
Publication Date:
NSF-PAR ID:
10112014
Journal Name:
BMJ Open
Volume:
9
Issue:
1
Page Range or eLocation-ID:
e024018
ISSN:
2044-6055
Sponsoring Org:
National Science Foundation
More Like this
  1. Background Internet data can be used to improve infectious disease models. However, the representativeness and individual-level validity of internet-derived measures are largely unexplored as this requires ground truth data for study. Objective This study sought to identify relationships between Web-based behaviors and/or conversation topics and health status using a ground truth, survey-based dataset. Methods This study leveraged a unique dataset of self-reported surveys, microbiological laboratory tests, and social media data from the same individuals toward understanding the validity of individual-level constructs pertaining to influenza-like illness in social media data. Logistic regression models were used to identify illness in Twitter postsmore »using user posting behaviors and topic model features extracted from users’ tweets. Results Of 396 original study participants, only 81 met the inclusion criteria for this study. Of these participants’ tweets, we identified only two instances that were related to health and occurred within 2 weeks (before or after) of a survey indicating symptoms. It was not possible to predict when participants reported symptoms using features derived from topic models (area under the curve [AUC]=0.51; P=.38), though it was possible using behavior features, albeit with a very small effect size (AUC=0.53; P≤.001). Individual symptoms were also generally not predictable either. The study sample and a random sample from Twitter are predictably different on held-out data (AUC=0.67; P≤.001), meaning that the content posted by people who participated in this study was predictably different from that posted by random Twitter users. Individuals in the random sample and the GoViral sample used Twitter with similar frequencies (similar @ mentions, number of tweets, and number of retweets; AUC=0.50; P=.19). Conclusions To our knowledge, this is the first instance of an attempt to use a ground truth dataset to validate infectious disease observations in social media data. The lack of signal, the lack of predictability among behaviors or topics, and the demonstrated volunteer bias in the study population are important findings for the large and growing body of disease surveillance using internet-sourced data.« less
  2. Abstract Objectives

    The study sought to test the feasibility of using Twitter data to assess determinants of consumers’ health behavior toward human papillomavirus (HPV) vaccination informed by the Integrated Behavior Model (IBM).

    Materials and Methods

    We used 3 Twitter datasets spanning from 2014 to 2018. We preprocessed and geocoded the tweets, and then built a rule-based model that classified each tweet into either promotional information or consumers’ discussions. We applied topic modeling to discover major themes and subsequently explored the associations between the topics learned from consumers’ discussions and the responses of HPV-related questions in the Health Information National Trends Survey (HINTS).

    more »Results

    We collected 2 846 495 tweets and analyzed 335 681 geocoded tweets. Through topic modeling, we identified 122 high-quality topics. The most discussed consumer topic is “cervical cancer screening”; while in promotional tweets, the most popular topic is to increase awareness of “HPV causes cancer.” A total of 87 of the 122 topics are correlated between promotional information and consumers’ discussions. Guided by IBM, we examined the alignment between our Twitter findings and the results obtained from HINTS. Thirty-five topics can be mapped to HINTS questions by keywords, 112 topics can be mapped to IBM constructs, and 45 topics have statistically significant correlations with HINTS responses in terms of geographic distributions.

    Conclusions

    Mining Twitter to assess consumers’ health behaviors can not only obtain results comparable to surveys, but also yield additional insights via a theory-driven approach. Limitations exist; nevertheless, these encouraging results impel us to develop innovative ways of leveraging social media in the changing health communication landscape.

    « less
  3. Background As a number of vaccines for COVID-19 are given emergency use authorization by local health agencies and are being administered in multiple countries, it is crucial to gain public trust in these vaccines to ensure herd immunity through vaccination. One way to gauge public sentiment regarding vaccines for the goal of increasing vaccination rates is by analyzing social media such as Twitter. Objective The goal of this research was to understand public sentiment toward COVID-19 vaccines by analyzing discussions about the vaccines on social media for a period of 60 days when the vaccines were started in the Unitedmore »States. Using the combination of topic detection and sentiment analysis, we identified different types of concerns regarding vaccines that were expressed by different groups of the public on social media. Methods To better understand public sentiment, we collected tweets for exactly 60 days starting from December 16, 2020 that contained hashtags or keywords related to COVID-19 vaccines. We detected and analyzed different topics of discussion of these tweets as well as their emotional content. Vaccine topics were identified by nonnegative matrix factorization, and emotional content was identified using the Valence Aware Dictionary and sEntiment Reasoner sentiment analysis library as well as by using sentence bidirectional encoder representations from transformer embeddings and comparing the embedding to different emotions using cosine similarity. Results After removing all duplicates and retweets, 7,948,886 tweets were collected during the 60-day time period. Topic modeling resulted in 50 topics; of those, we selected 12 topics with the highest volume of tweets for analysis. Administration and access to vaccines were some of the major concerns of the public. Additionally, we classified the tweets in each topic into 1 of the 5 emotions and found fear to be the leading emotion in the tweets, followed by joy. Conclusions This research focused not only on negative emotions that may have led to vaccine hesitancy but also on positive emotions toward the vaccine. By identifying both positive and negative emotions, we were able to identify the public's response to the vaccines overall and to news events related to the vaccines. These results are useful for developing plans for disseminating authoritative health information and for better communication to build understanding and trust.« less
  4. The large volume of geotagged Twitter streaming data on flu epidemics provides chances for researchers to explore, model, and predict the trends of flu cases in a timely manner. However, the explosive growth of data from social media makes data sampling a natural choice. In this paper, we develop a method for influenza prediction based on the real-time tweet data from social media, and this method ensures real-time prediction and is applicable to sampling data. Specifically, we first simulate the sampling process of flu tweets, and then develop a specific partial differential equation (PDE) model to characterize and predict themore »aggregated flu tweet volumes. Our PDE model incorporates the effects of flu spreading, flu recovery, and active human interventions for reducing flu. Our extensive simulation results show that this PDE model can almost eliminate the data reduction effects from the sampling process: It requires lesser historical data but achieves stronger prediction results with a relative accuracy of over 90% on the 1% sampling data. Even for the more aggressive data sampling ratios such as 0.1% and 0.01% sampling, our model is still able to achieve relative accuracies of 85% and 83%, respectively. These promising results highlight the ability of our mechanistic PDE model in predicting temporal–spatial patterns of flu trends even in the scenario of small sampling Twitter data.« less
  5. Community engagement efforts have become an important avenue for raising public interest and know-how related to engineering. These efforts draw the young and the diverse into seeing engineering as a worthwhile profession. One such effort at the national level in the U.S. is the “National Engineers Week”. This is a week-long celebration held every February that consists of numerous events and activities organized for the general public with a focus towards students, women, and under-represented groups. In this paper, we examined this effort through the lens of social media and analyzed Twitter data collected for two hashtags used during themore »National Engineers Week 2017: “#eweek2017” and “#engineersweek”. Our dataset consisted of 6,583 original tweets and 10,885 retweets. To study the impact of the outreach we used three analytical approaches: descriptive analysis, content analysis, and network analysis. We found that the Twitter campaign participation was dominated by engineering companies and individual users followed by a limited participation of educational institutions, professional engineering associations, and non-profits. As opposed to other popular hashtag campaigns, not a single news media organization was identified as a participating user signaling a lower new media-driven propagation of the campaign among the public. From a content perspective, the tweets can be categorized as event promotion, showcasing employees of engineering companies, or encouraging and inspiring public (especially women and children) towards engineering. With the growing popularity of social media, community engagement efforts need to strategically leverage hashtags and other media elements for a broader impact.« less