Abstract Accurate, high-resolution tracking of influenza epidemics at the regional level helps public health agencies make informed and proactive decisions, especially in the face of outbreaks. Internet users’ online searches offer great potential for the regional tracking of influenza. However, due to the complex data structure and reduced quality of Internet data at the regional level, few established methods provide satisfactory performance. In this article, we propose a novel method named ARGO2 (2-step Augmented Regression with GOogle data) that efficiently combines publicly available Google search data at different resolutions (national and regional) with traditional influenza surveillance data from the Centers for Disease Control and Prevention (CDC) for accurate, real-time regional tracking of influenza. ARGO2 gives very competitive performance across all US regions compared with available Internet-data-based regional influenza tracking methods, and it has achieved 30% error reduction over the best alternative method that we numerically tested for the period of March 2009 to March 2018. ARGO2 is reliable and robust, with the flexibility to incorporate additional information from other sources and resolutions, making it a powerful tool for regional influenza tracking, and potentially for tracking other social, economic, or public health events at the regional or local level. 
                        more » 
                        « less   
                    
                            
                            Can online self-reports assist in real-time identification of influenza vaccination uptake? A cross-sectional study of influenza vaccine-related tweets in the USA, 2013–2017
                        
                    
    
            Introduction The Centers for Disease Control and Prevention (CDC) spend significant time and resources to track influenza vaccination coverage each influenza season using national surveys. Emerging data from social media provide an alternative solution to surveillance at both national and local levels of influenza vaccination coverage in near real time. Objectives This study aimed to characterise and analyse the vaccinated population from temporal, demographical and geographical perspectives using automatic classification of vaccination-related Twitter data. Methods In this cross-sectional study, we continuously collected tweets containing both influenza-related terms and vaccine-related terms covering four consecutive influenza seasons from 2013 to 2017. We created a machine learning classifier to identify relevant tweets, then evaluated the approach by comparing to data from the CDC’s FluVaxView. We limited our analysis to tweets geolocated within the USA. Results We assessed 1 124 839 tweets. We found strong correlations of 0.799 between monthly Twitter estimates and CDC, with correlations as high as 0.950 in individual influenza seasons. We also found that our approach obtained geographical correlations of 0.387 at the US state level and 0.467 at the regional level. Finally, we found a higher level of influenza vaccine tweets among female users than male users, also consistent with the results of CDC surveys on vaccine uptake. Conclusion Significant correlations between Twitter data and CDC data show the potential of using social media for vaccination surveillance. Temporal variability is captured better than geographical and demographical variability. We discuss potential paths forward for leveraging this approach. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1657338
- PAR ID:
- 10112014
- Date Published:
- Journal Name:
- BMJ Open
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2044-6055
- Page Range / eLocation ID:
- e024018
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Background Internet data can be used to improve infectious disease models. However, the representativeness and individual-level validity of internet-derived measures are largely unexplored as this requires ground truth data for study. Objective This study sought to identify relationships between Web-based behaviors and/or conversation topics and health status using a ground truth, survey-based dataset. Methods This study leveraged a unique dataset of self-reported surveys, microbiological laboratory tests, and social media data from the same individuals toward understanding the validity of individual-level constructs pertaining to influenza-like illness in social media data. Logistic regression models were used to identify illness in Twitter posts using user posting behaviors and topic model features extracted from users’ tweets. Results Of 396 original study participants, only 81 met the inclusion criteria for this study. Of these participants’ tweets, we identified only two instances that were related to health and occurred within 2 weeks (before or after) of a survey indicating symptoms. It was not possible to predict when participants reported symptoms using features derived from topic models (area under the curve [AUC]=0.51; P=.38), though it was possible using behavior features, albeit with a very small effect size (AUC=0.53; P≤.001). Individual symptoms were also generally not predictable either. The study sample and a random sample from Twitter are predictably different on held-out data (AUC=0.67; P≤.001), meaning that the content posted by people who participated in this study was predictably different from that posted by random Twitter users. Individuals in the random sample and the GoViral sample used Twitter with similar frequencies (similar @ mentions, number of tweets, and number of retweets; AUC=0.50; P=.19). Conclusions To our knowledge, this is the first instance of an attempt to use a ground truth dataset to validate infectious disease observations in social media data. The lack of signal, the lack of predictability among behaviors or topics, and the demonstrated volunteer bias in the study population are important findings for the large and growing body of disease surveillance using internet-sourced data.more » « less
- 
            Background As a number of vaccines for COVID-19 are given emergency use authorization by local health agencies and are being administered in multiple countries, it is crucial to gain public trust in these vaccines to ensure herd immunity through vaccination. One way to gauge public sentiment regarding vaccines for the goal of increasing vaccination rates is by analyzing social media such as Twitter. Objective The goal of this research was to understand public sentiment toward COVID-19 vaccines by analyzing discussions about the vaccines on social media for a period of 60 days when the vaccines were started in the United States. Using the combination of topic detection and sentiment analysis, we identified different types of concerns regarding vaccines that were expressed by different groups of the public on social media. Methods To better understand public sentiment, we collected tweets for exactly 60 days starting from December 16, 2020 that contained hashtags or keywords related to COVID-19 vaccines. We detected and analyzed different topics of discussion of these tweets as well as their emotional content. Vaccine topics were identified by nonnegative matrix factorization, and emotional content was identified using the Valence Aware Dictionary and sEntiment Reasoner sentiment analysis library as well as by using sentence bidirectional encoder representations from transformer embeddings and comparing the embedding to different emotions using cosine similarity. Results After removing all duplicates and retweets, 7,948,886 tweets were collected during the 60-day time period. Topic modeling resulted in 50 topics; of those, we selected 12 topics with the highest volume of tweets for analysis. Administration and access to vaccines were some of the major concerns of the public. Additionally, we classified the tweets in each topic into 1 of the 5 emotions and found fear to be the leading emotion in the tweets, followed by joy. Conclusions This research focused not only on negative emotions that may have led to vaccine hesitancy but also on positive emotions toward the vaccine. By identifying both positive and negative emotions, we were able to identify the public's response to the vaccines overall and to news events related to the vaccines. These results are useful for developing plans for disseminating authoritative health information and for better communication to build understanding and trust.more » « less
- 
            Kacprzyk, Janusz; Pal, Nikhil R; Perez, Rafael B; Corchado, Emilio S; Hagras, Hani; Kóczy, László T; Kreinovich, Vladik; Lin, Chin-Teng; Lu, Jie; Melin, Patricia (Ed.)The COVID-19 pandemic was lived in real-time on social media. In the current project, we use machine learning to explore the relationship between COVID-19 cases and social media activity on Twitter. We were particularly interested in determining if Twitter activity can be used to predict COVID-19 surges. We also were interested in exploring features of social media, such as replies, to determine their promise for understanding the views of individual users. With the prevalence of mis/disinformation on social media, it is critical to develop a deeper and richer understanding of the relationship between social media and real-world events in order to detect and prevent future influence operations. In the current work, we explore the relationship between COVID-19 cases and social media activity (on Twitter) in three major United States cities with different geographical and political landscapes. We find that Twitter activity resulted in statistically significant correlations using the Granger causality test, with a lag of one week in all three cities. Similarly, the use of replies, which appear more likely to be generated by individual users, not bots or public relations operations, was also strongly correlated with the number of COVID-19 cases using the Granger causality test. Furthermore, we were able to build promising predictive models for the number of future COVID-19 cases using correlation data to select features for input to our models. In contrast, significant correlations were not identified when comparing the number of COVID-19 cases with mainstream media sources or with a sample of all US COVID-related tweets. We conclude that, even for an international event such as COVID-19, social media tracks closely with local conditions. We also suggest that replies can be a valuable feature within a machine learning task that is attempting to gauge the reactions of individual users.more » « less
- 
            As the problem of drug abuse intensifies in the U.S., many studies that primarily utilize social media data, such as postings on Twitter, to study drug abuse-related activities use machine learning as a powerful tool for text classification and filtering. However, given the wide range of topics of Twitter users, tweets related to drug abuse are rare in most of the datasets. This imbalanced data remains a major issue in building effective tweet classifiers, and is especially obvious for studies that include abuse-related slang terms. In this study, we approach this problem by designing an ensemble deep learning model that leverages both word-level and character-level features to classify abuse-related tweets. Experiments are reported on a Twitter dataset, where we can configure the percentages of the two classes (abuse vs. non-abuse) to simulate the data imbalance with different amplitudes. Results show that our ensemble deep learning models exhibit better performance than ensembles of traditional machine learning models, especially on heavily imbalanced datasets.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    