skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Topics and Sentiments of Public Concerns Regarding COVID-19 Vaccines: Social Media Trend Analysis
Background As a number of vaccines for COVID-19 are given emergency use authorization by local health agencies and are being administered in multiple countries, it is crucial to gain public trust in these vaccines to ensure herd immunity through vaccination. One way to gauge public sentiment regarding vaccines for the goal of increasing vaccination rates is by analyzing social media such as Twitter. Objective The goal of this research was to understand public sentiment toward COVID-19 vaccines by analyzing discussions about the vaccines on social media for a period of 60 days when the vaccines were started in the United States. Using the combination of topic detection and sentiment analysis, we identified different types of concerns regarding vaccines that were expressed by different groups of the public on social media. Methods To better understand public sentiment, we collected tweets for exactly 60 days starting from December 16, 2020 that contained hashtags or keywords related to COVID-19 vaccines. We detected and analyzed different topics of discussion of these tweets as well as their emotional content. Vaccine topics were identified by nonnegative matrix factorization, and emotional content was identified using the Valence Aware Dictionary and sEntiment Reasoner sentiment analysis library as well as by using sentence bidirectional encoder representations from transformer embeddings and comparing the embedding to different emotions using cosine similarity. Results After removing all duplicates and retweets, 7,948,886 tweets were collected during the 60-day time period. Topic modeling resulted in 50 topics; of those, we selected 12 topics with the highest volume of tweets for analysis. Administration and access to vaccines were some of the major concerns of the public. Additionally, we classified the tweets in each topic into 1 of the 5 emotions and found fear to be the leading emotion in the tweets, followed by joy. Conclusions This research focused not only on negative emotions that may have led to vaccine hesitancy but also on positive emotions toward the vaccine. By identifying both positive and negative emotions, we were able to identify the public's response to the vaccines overall and to news events related to the vaccines. These results are useful for developing plans for disseminating authoritative health information and for better communication to build understanding and trust.  more » « less
Award ID(s):
1741306
PAR ID:
10304080
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Medical Internet Research
Volume:
23
Issue:
10
ISSN:
1438-8871
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The COVID-19 pandemic has been sweeping across the United States of America since early 2020. The whole world was waiting for vaccination to end this pandemic. Since the approval of the first vaccine by the U.S. CDC on 9 November 2020, nearly 67.5% of the US population have been fully vaccinated by 10 July 2022. While quite successful in controlling the spreading of COVID-19, there were voices against vaccines. Therefore, this research utilizes geo-tweets and Bayesian-based method to investigate public opinions towards vaccines based on (1) the spatiotemporal changes in public engagement and public sentiment; (2) how the public engagement and sentiment react to different vaccine-related topics; (3) how various races behave differently. We connected the phenomenon observed to real-time and historical events. We found that in general the public is positive towards COVID-19 vaccines. Public sentiment positivity went up as more people were vaccinated. Public sentiment on specific topics varied in different periods. African Americans’ sentiment toward vaccines was relatively lower than other races. 
    more » « less
  2. Public sentiment toward the COVID-19 vaccine as expressed on social media can interfere with communication by public health agencies on the importance of getting vaccinated. We investigated Twitter data to understand differences in sentiment, moral values, and language use between political ideologies on the COVID-19 vaccine. We estimated political ideology, conducted a sentiment analysis, and guided by the tenets of moral foundations theory (MFT), we analyzed 262,267 English language tweets from the United States containing COVID-19 vaccine-related keywords between May 2020 and October 2021. We applied the Moral Foundations Dictionary and used topic modeling and Word2Vec to understand moral values and the context of words central to the discussion of the vaccine debate. A quadratic trend showed that extreme ideologies of both Liberals and Conservatives expressed a higher negative sentiment than Moderates, with Conservatives expressing more negative sentiment than Liberals. Compared to Conservative tweets, we found the expression of Liberal tweets to be rooted in a wider set of moral values, associated with moral foundations of care (getting the vaccine for protection), fairness (having access to the vaccine), liberty (related to the vaccine mandate), and authority (trusting the vaccine mandate imposed by the government). Conservative tweets were found to be associated with harm (around safety of the vaccine) and oppression (around the government mandate). Furthermore, political ideology was associated with the expression of different meanings for the same words, e.g. “science” and “death.” Our results inform public health outreach communication strategies to best tailor vaccine information to different groups. 
    more » « less
  3. Social media platforms are frequently used to share information and opinions around vaccinations. The more often a message is reshared, the wider the reach of the message and potential influence it may have on shaping people’s opinions to get vaccinated or not. We used a negative binomial regression to investigate whether a message’s linguistic characteristics (degree of concreteness, emotional arousal, and sentiment) and user characteristics (political ideology and number of followers) may influence users’ decisions to reshare tweets related to the COVID-19 vaccine. We analyzed US English-language tweets related to the COVID-19 vaccine between May 2020 and October 2021 (N = 236,054). Tweets with positive and high-arousal words were more often retweeted than negative, low-arousal tweets. Tweets with abstract words were more often retweeted than tweets with concrete words. In addition, while Liberal users were more likely to have tweets with a positive sentiment reshared, Conservative users were more likely to have tweets with a negative sentiment reshared. Our results can inform public health messaging on how to best phrase vaccine information to impact engagement and information resharing, and potentially persuade a wider set of people to get vaccinated. 
    more » « less
  4. The COVID-19 pandemic has had a profound impact on the global community, and vaccination has been recognized as a crucial intervention. To gain insight into public perceptions of COVID-19 vaccines, survey studies and the analysis of social media platforms have been conducted. However, existing methods lack consideration of individual vaccination intentions or status and the relationship between public perceptions and actual vaccine uptake. To address these limitations, this study proposes a text classification approach to identify tweets indicating a user’s intent or status on vaccination. A comparative analysis between the proportions of tweets from different categories and real-world vaccination data reveals notable alignment, suggesting that tweets may serve as a precursor to actual vaccination status. Further, regression analysis and time series forecasting were performed to explore the potential of tweet data, demonstrating the significance of incorporating tweet data in predicting future vaccination status. Finally, clustering was applied to the tweet sets with positive and negative labels to gain insights into underlying focuses of each stance. 
    more » « less
  5. BACKGROUNDEffective communication is crucial during health crises, and social media has become a prominent platform for public health experts to inform and to engage with the public. At the same time, social media also platforms pseudo-experts who may promote contrarian views. Despite the significance of social media, key elements of communication such as the use of moral or emotional language and messaging strategy, particularly during the COVID-19 pandemic, has not been explored. OBJECTIVEThis study aims to analyze how notable public health experts (PHEs) and pseudo-experts communicated with the public during the COVID-19 pandemic. Our focus is the emotional and moral language they used in their messages across a range of pandemic issues. We also study their engagement with political elites and how the public engaged with PHEs to better understand the impact of these health experts on the public discourse. METHODSWe gathered a dataset of original tweets from 489 PHEs and 356 pseudo- experts on Twitter (now X) from January 2020 to January 2021, as well as replies to the original tweets from the PHEs. We identified the key issues that PHEs and pseudo- experts prioritized. We also determined the emotional and moral language in both the original tweets and the replies. This approach enabled us to characterize key priorities for PHEs and pseudo-experts, as well as differences in messaging strategy between these two groups. We also evaluated the influence of PHE language and strategy on the public response. RESULTSOur analyses revealed that PHEs focus on masking, healthcare, education, and vaccines, whereas pseudo-experts discuss therapeutics and lockdowns more frequently. PHEs typically used positive emotional language across all issues, expressing optimism and joy. Pseudo-experts often utilized negative emotions of pessimism and disgust, while limiting positive emotional language to origins and therapeutics. Along the dimensions of moral language, PHEs and pseudo-experts differ on care versus harm, and authority versus subversion, across different issues. Negative emotional and moral language tends to boost engagement in COVID-19 discussions, across all issues. However, the use of positive language by PHEs increases the use of positive language in the public responses. PHEs act as liberal partisans: they express more positive affect in their posts directed at liberals and more negative affect directed at conservative elites. In contrast, pseudo-experts act as conservative partisans. These results provide nuanced insights into the elements that have polarized the COVID-19 discourse. CONCLUSIONSUnderstanding the nature of the public response to PHE’s messages on social media is essential for refining communication strategies during health crises. Our findings emphasize the need for experts to consider the strategic use of moral and emotional language in their messages to reduce polarization and enhance public trust. 
    more » « less