skip to main content


Title: Building a Cybersecurity Pipeline through Experiential Virtual Labs and Workforce Alliances
This paper describes a project led by the University of South Carolina (USC) to address the cybersecurity workforce gap. The project creates curricular material based on virtual laboratories (vLabs). As vLabs are developed, they are adopted and tested at USC and Northern New Mexico College (NNMC), the main partnering institution in this project. These vLabs consist of virtual equipment (e.g., virtual network, virtual router, virtual firewall) emulating complete systems on-demand running in NETLAB. NETLAB is a widely used platform for training purposes across the country, with more than 1,000 institutions currently using it. USC and NNMC have also established an alliance with industry organizations and with Los Alamos National Laboratory (LANL) and Savannah River National Laboratory (SRNL) to establish internship opportunities. Currently, student interns are not only exercising technical skills but also developing soft skills such as team work and time management. Finally, in partnership with manufacturer leaders, the project permits students to earn industry certificates. These certificates are aligned with the guidelines for “Information Technology Curricula 2017 for IT programs” by the IEEE/ACM. Specifically, the guidelines indicate that IT should emphasize “learning IT core concepts combined with authentic practice” and “use of professional tools and platforms.” Hands-on vLabs activities show that providing access to computing technologies (e.g., professional next-generation firewalls, routers) used in the work environment eases the transition of students from academia to the workplace.  more » « less
Award ID(s):
1822567
NSF-PAR ID:
10112143
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ASEE annual conference & exposition proceedings
ISSN:
2153-5868
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper describes a project led by the University of South Carolina (USC) to address the cybersecurity workforce gap. The project creates curricular material based on virtual laboratories (vLabs). As vLabs are developed, they are adopted and tested at USC and Northern New Mexico College (NNMC), the main partnering institution in this project. These vLabs consist of virtual equipment (e.g., virtual network, virtual router, virtual firewall) emulating complete systems on-demand running in NETLAB. NETLAB is a widely used platform for training purposes across the country, with more than 1,000 institutions currently using it. USC and NNMC have also established an alliance with industry organizations and with Los Alamos National Laboratory (LANL) and Savannah River National Laboratory (SRNL) to establish internship opportunities. Currently, student interns are not only exercising technical skills but also developing soft skills such as team work and time management. Finally, in partnership with manufacturer leaders, the project permits students to earn industry certificates. These certificates are aligned with the guidelines for “Information Technology Curricula 2017 for IT programs” by the IEEE/ACM. Specifically, the guidelines indicate that IT should emphasize “learning IT core concepts combined with authentic practice” and “use of professional tools and platforms.” Hands-on vLabs activities show that providing access to computing technologies (e.g., professional next-generation firewalls, routers) used in the work environment eases the transition of students from academia to the workplace. 
    more » « less
  2. This paper describes a project led by the University of South Carolina (USC) to address the cybersecurity workforce gap. The project creates curricular material based on virtual laboratories (vLabs). As vLabs are developed, they are adopted and tested at USC and Northern New Mexico College (NNMC), the main partnering institution in this project. These vLabs consist of virtual equipment (e.g., virtual network, virtual router, virtual firewall) emulating complete systems on-demand running in NETLAB. NETLAB is a widely used platform for training purposes across the country, with more than 1,000 institutions currently using it. USC and NNMC have also established an alliance with industry organizations and with Los Alamos National Laboratory (LANL) and Savannah River National Laboratory (SRNL) to establish internship opportunities. Currently, student interns are not only exercising technical skills but also developing soft skills such as team work and time management. Finally, in partnership with manufacturer leaders, the project permits students to earn industry certificates. These certificates are aligned with the guidelines for “Information Technology Curricula 2017 for IT programs” by the IEEE/ACM. Specifically, the guidelines indicate that IT should emphasize “learning IT core concepts combined with authentic practice” and “use of professional tools and platforms.” Hands-on vLabs activities show that providing access to computing technologies (e.g., professional next-generation firewalls, routers) used in the work environment eases the transition of students from academia to the workplace. 
    more » « less
  3. In the midst of the pandemic, a 2-year Hispanic Serving Institution (HSI) in metropolitan Phoenix launched the Information Technology Institute (ITI), and a five-year National Science Foundation (NSF) sponsored program to provide culturally responsive work-based experiential learning opportunities for adult students balancing multiple jobs and responsibilities. This paper discusses the benefits to students in gaining IT experience alongside industry mentors, how peer mentoring increases engagement, and the challenges of hybrid delivery during the pandemic. Two types of paid opportunities were designed and are currently in pilot mode to provide real-world IT experience for undergraduate students: 1) externships situated on-campus, under the supervision of faculty and assisted by peer-mentors and industry mentors and 2) internships situated with local companies under the supervision of industry employees. When career preparedness elements were interwoven while learning and practicing new IT skills within hands-on project deliverables, externs reported benefits such as increased confidence in seeking out employment opportunities, preparing for interviews, professional networking, leadership development, and conveying their industry experience in their resumes and on LinkedIn. Lessons learned to date related to engaging and retaining targeted students include the need to: prioritize student well-being and work/life balance, pay students during the externships or internships, intentionally immerse students within the work-based experiences, provide continual guidance and structuring on projects where students own a specific work deliverable - yet collaborate, incorporate culturally responsive mentoring from peers, faculty, and industry to meet students where they are in terms of technical and professional skills, design flexibility into the work schedule, and accommodate both virtual and in person work sites. 
    more » « less
  4. The development of inclusive leaders is essential for the success of future engineering and our nation. Equipping students with vital leadership-enabling competencies is necessary to develop a workforce that is prepared to act ethically, and responsibly, and tackle unforeseen challenges in the future. Inclusive leaders, or leaders that are self-aware, empathetic, and prioritize diversity, equity, and inclusion in their decision-making, are essential for the forward progress of engineering. A growing body of literature highlights the numerous ways in which students may develop leadership skills outside of the classroom through involvement in out-of-class activities (e.g., internships, clubs, sports, and research experiences). Research Experiences for Undergraduates (REUs) may provide students with a unique opportunity to develop leadership-enabling competencies that will prepare them for leadership in graduate school, the engineering industry, or academia. The goal of this research was to identify how students’ engagement in an engineering education virtual REU site contributed to their development of essential leadership-enabling competencies. The research question guiding this study was ‘What inclusive leadership-enabling competencies and skills did engineering students learn and develop during an engineering education Summer REU program?’ Qualitative data was collected via weekly open-ended surveys from 9 students (7 women, 2 men) participating in an REU over 9 weeks. Participants in this study consisted of students from underrepresented groups in engineering (e.g., Black, Latinx, women, students from low SES backgrounds, or first-generation students), attending large public research universities across the United States. This study implemented mixed methods to understand what leadership competencies were occurring most frequently and how students were learning and developing these competencies. A combination of text mining for frequency (quantitative analysis) and deductive and inductive coding (qualitative analysis) was used to analyze the data. A codebook was developed based on the leadership-coupled professional competencies that engineering industry leaders identified as essential for engineers entering the workforce. Researchers also allowed for other competencies and leadership-enabling skills to emerge from the data. Findings from this work indicate that students were developing a vast amount of inclusive leadership knowledge and skills from participating in the virtual REU site. This paper highlights, through the use of word clouds and text mining software, the many leadership-enabling competencies that participants developed throughout the summer research experience (e.g., learning, communication, adaptability, self-awareness, balance, networking, etc.). Further, students were able to develop digital literacy, increased communication skills, knowledge of career pathways, intrapersonal growth, and interpersonal relations. This work offers a novel contribution to the literature in understanding how students can develop technical engineering and research skills as well as professional and leadership skills in the same space. Findings from this work help to illuminate the benefits of this virtual REU site focused on engineering education research resulting in terms of developing inclusive leadership skills. Implications for future REU programs, students interested in developing leadership skills, engineering graduate programs, academia, and industry employers are outlined. 
    more » « less
  5. With support from the National Science Foundation’s Division of Undergraduate Education, this five-year project led by a two-year HSI seeks to provide underrepresented students with mentored work experiences in computer information systems. Students will have access to on-campus work experiences and internships in businesses and industries. It is anticipated that some examples of potential student projects include mobile application development, cybersecurity, and computer support. It is expected that these experiences will increase undergraduate student interest, persistence, and success in computer information systems, as well as in STEM more broadly. To ensure that they are well-prepared for and gain the most from their work experiences, students will receive training on employability skills such as communication, teamwork, and project management. In addition, during their work experiences, students will be mentored by faculty, industry professionals, and peers. To strengthen the capacity of faculty to serve all students, including Hispanic students, the project will provide faculty with professional development focused on equity mindset. This framework to provide mentored work experiences will be developed and piloted at Phoenix College, in the computer information technology department and eventually expanded to other STEM fields at the institution. Following this, the project also intends to expand this framework four other two-year HSIs in the region. Through this work, the project aims to develop a replicable model for how two-year institutions can develop work experiences that foster increased student graduation and entry into STEM career pathways. This project, which is currently in its first year, seeks to examine how a curriculum that integrates cross-sector partnerships to provide work experiences can enhance STEM learning and retention. Using mixed methods and grounded theory, the project will expand knowledge about: (1) the impact of cross-sector partnerships that support work-focused experiential teaching and learning; (2) systematic ways to maintain and better use cross-sector partnerships; and (3) the degree to which a model of work-focused learning experiences can be adopted at other two-year HSIs and by other STEM fields. Baseline data about Hispanic serving identity at the pilot institution has been collected and assessed at the institutional, departmental, and for different educator roles including faculty, support staff, and administrative leaders to produce inputs towards developing a detailed plan of action. Early results from baseline data, visualizations, and planning responses will be reported in the submission. Expected long term results of the project include: development of sustainable mechanisms to foster cross-sector partnerships; increased student retention and workforce readiness; and measurable successes for STEM students, particularly Hispanic students, at two-year HSIs. 
    more » « less