skip to main content

Title: Building a Cybersecurity Pipeline through Experiential Virtual Labs and Workforce Alliances
This paper describes a project led by the University of South Carolina (USC) to address the cybersecurity workforce gap. The project creates curricular material based on virtual laboratories (vLabs). As vLabs are developed, they are adopted and tested at USC and Northern New Mexico College (NNMC), the main partnering institution in this project. These vLabs consist of virtual equipment (e.g., virtual network, virtual router, virtual firewall) emulating complete systems on-demand running in NETLAB. NETLAB is a widely used platform for training purposes across the country, with more than 1,000 institutions currently using it. USC and NNMC have also established an alliance with industry organizations and with Los Alamos National Laboratory (LANL) and Savannah River National Laboratory (SRNL) to establish internship opportunities. Currently, student interns are not only exercising technical skills but also developing soft skills such as team work and time management. Finally, in partnership with manufacturer leaders, the project permits students to earn industry certificates. These certificates are aligned with the guidelines for “Information Technology Curricula 2017 for IT programs” by the IEEE/ACM. Specifically, the guidelines indicate that IT should emphasize “learning IT core concepts combined with authentic practice” and “use of professional tools and platforms.” Hands-on vLabs activities more » show that providing access to computing technologies (e.g., professional next-generation firewalls, routers) used in the work environment eases the transition of students from academia to the workplace. « less
Authors:
; ; ;
Award ID(s):
1822567
Publication Date:
NSF-PAR ID:
10112143
Journal Name:
ASEE annual conference & exposition proceedings
ISSN:
2153-5868
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper describes a project led by the University of South Carolina (USC) to address the cybersecurity workforce gap. The project creates curricular material based on virtual laboratories (vLabs). As vLabs are developed, they are adopted and tested at USC and Northern New Mexico College (NNMC), the main partnering institution in this project. These vLabs consist of virtual equipment (e.g., virtual network, virtual router, virtual firewall) emulating complete systems on-demand running in NETLAB. NETLAB is a widely used platform for training purposes across the country, with more than 1,000 institutions currently using it. USC and NNMC have also established an alliance with industry organizations and with Los Alamos National Laboratory (LANL) and Savannah River National Laboratory (SRNL) to establish internship opportunities. Currently, student interns are not only exercising technical skills but also developing soft skills such as team work and time management. Finally, in partnership with manufacturer leaders, the project permits students to earn industry certificates. These certificates are aligned with the guidelines for “Information Technology Curricula 2017 for IT programs” by the IEEE/ACM. Specifically, the guidelines indicate that IT should emphasize “learning IT core concepts combined with authentic practice” and “use of professional tools and platforms.” Hands-on vLabs activitiesmore »show that providing access to computing technologies (e.g., professional next-generation firewalls, routers) used in the work environment eases the transition of students from academia to the workplace.« less
  2. This paper describes a project led by the University of South Carolina (USC) to address the cybersecurity workforce gap. The project creates curricular material based on virtual laboratories (vLabs). As vLabs are developed, they are adopted and tested at USC and Northern New Mexico College (NNMC), the main partnering institution in this project. These vLabs consist of virtual equipment (e.g., virtual network, virtual router, virtual firewall) emulating complete systems on-demand running in NETLAB. NETLAB is a widely used platform for training purposes across the country, with more than 1,000 institutions currently using it. USC and NNMC have also established an alliance with industry organizations and with Los Alamos National Laboratory (LANL) and Savannah River National Laboratory (SRNL) to establish internship opportunities. Currently, student interns are not only exercising technical skills but also developing soft skills such as team work and time management. Finally, in partnership with manufacturer leaders, the project permits students to earn industry certificates. These certificates are aligned with the guidelines for “Information Technology Curricula 2017 for IT programs” by the IEEE/ACM. Specifically, the guidelines indicate that IT should emphasize “learning IT core concepts combined with authentic practice” and “use of professional tools and platforms.” Hands-on vLabs activitiesmore »show that providing access to computing technologies (e.g., professional next-generation firewalls, routers) used in the work environment eases the transition of students from academia to the workplace.« less
  3. With support from the National Science Foundation’s Division of Undergraduate Education, this five-year project led by a two-year HSI seeks to provide underrepresented students with mentored work experiences in computer information systems. Students will have access to on-campus work experiences and internships in businesses and industries. It is anticipated that some examples of potential student projects include mobile application development, cybersecurity, and computer support. It is expected that these experiences will increase undergraduate student interest, persistence, and success in computer information systems, as well as in STEM more broadly. To ensure that they are well-prepared for and gain the most from their work experiences, students will receive training on employability skills such as communication, teamwork, and project management. In addition, during their work experiences, students will be mentored by faculty, industry professionals, and peers. To strengthen the capacity of faculty to serve all students, including Hispanic students, the project will provide faculty with professional development focused on equity mindset. This framework to provide mentored work experiences will be developed and piloted at Phoenix College, in the computer information technology department and eventually expanded to other STEM fields at the institution. Following this, the project also intends to expand this frameworkmore »four other two-year HSIs in the region. Through this work, the project aims to develop a replicable model for how two-year institutions can develop work experiences that foster increased student graduation and entry into STEM career pathways. This project, which is currently in its first year, seeks to examine how a curriculum that integrates cross-sector partnerships to provide work experiences can enhance STEM learning and retention. Using mixed methods and grounded theory, the project will expand knowledge about: (1) the impact of cross-sector partnerships that support work-focused experiential teaching and learning; (2) systematic ways to maintain and better use cross-sector partnerships; and (3) the degree to which a model of work-focused learning experiences can be adopted at other two-year HSIs and by other STEM fields. Baseline data about Hispanic serving identity at the pilot institution has been collected and assessed at the institutional, departmental, and for different educator roles including faculty, support staff, and administrative leaders to produce inputs towards developing a detailed plan of action. Early results from baseline data, visualizations, and planning responses will be reported in the submission. Expected long term results of the project include: development of sustainable mechanisms to foster cross-sector partnerships; increased student retention and workforce readiness; and measurable successes for STEM students, particularly Hispanic students, at two-year HSIs.« less
  4. The HSI (Hispanic Serving Institution) ATE (Advanced Technological Education) Hub 2 is a three-year collaborative research project funded by the National Science Foundation (NSF) that continues the partnership between two successful programs and involves a third partner in piloting professional development that draws upon findings from the initial program. The goal of HSI ATE Hub 2 is to improve outcomes for Latinx students in technician education programs through design, development, pilot delivery, and dissemination of a 3-tier professional development (PD) model for culturally responsive technician education at 2-year Hispanic Serving Institutions (HSIs). The project seeks to do this by developing the awareness and ability of faculty to appreciate, engage, and affirm the unique cultural identities of the students in their classes and use this connection to deepen students’ belonging and emerging identities as STEM learners and future STEM technicians. This paper shares the research foundations shaping this approach and the methods by which faculty professional development is being provided to develop this important and sensitive instructional capability in participating faculty. The tiered PD model features a scaffolded series of reflective and activity-oriented modules to incrementally enrich the instructional practices and mindset of HSI STEM educators and strengthen their repertoire ofmore »strategies for engaging culturally diverse students. Scaffolding that translates culturally responsive theory to practice spans each of the four distinct topic modules in each tier. Each topic module in a tier then scaffolds to a more advanced topic module in the next tier. Tier 1, Bienvenidos, welcomes HSI STEM educators who recognize the need to better serve their Latinx students, and want guidance for small practical activities to try with their students. Tier 2, Transformation through Action, immerses HSI STEM educators in additional activities that bring culturally responsive practices into their technician training while building capacity to collect evidence about impacts and outcomes for students. Tier 3, Engaging Community, strengthens leadership as HSI STEM educators disseminate results from activities completed in Tiers 1 and 2 at conferences that attract technician educators. Sharing the evidence-based practices and their outcomes contributes to achieving broader impacts in the Advanced Technological Education or ATE Community of NSF grantees. Westchester Community College (WCC), the first 2-year HSI in the State University of New York (SUNY) 64 campus system, is piloting the 3-tier PD model using virtual learning methods mastered through previous NSF ATE work and the COVID-19 context. During the pilot, over 20 WCC technician educators in three cohorts will develop leadership skills and practice culturally responsive methods. The pilot will build capacity within WCC STEM technician programs to better support the diversity of students, industry demand for a diverse workforce, and WCC’s capacity for future development of technician education programs. This first paper in a three part series describes the program goals and objectives, the 3-Tier PD model, and reports initial results for Cohort A’s engagement in the first three modules of Tier 1.« less
  5. The HSI (Hispanic Serving Institution) ATE (Advanced Technological Education) Hub 2 is a three-year collaborative research project funded by the National Science Foundation (NSF) that continues the partnership between two successful programs and involves a third partner in piloting professional development that draws upon findings from the initial program. The goal of HSI ATE Hub 2 is to improve outcomes for Latinx students in technician education programs through design, development, pilot delivery, and dissemination of a 3-tier professional development (PD) model for culturally responsive technician education at 2-year Hispanic Serving Institutions (HSIs). The project seeks to do this by developing the awareness and ability of faculty to appreciate, engage, and affirm the unique cultural identities of the students in their classes and use this connection to deepen students’ belonging and emerging identities as STEM learners and future STEM technicians. This paper shares the research foundations shaping this approach and the methods by which faculty professional development is being provided to develop this important and sensitive instructional capability in participating faculty. The tiered PD model features a scaffolded series of reflective and activity-oriented modules to incrementally enrich the instructional practices and mindset of HSI STEM educators and strengthen their repertoire ofmore »strategies for engaging culturally diverse students. Scaffolding that translates culturally responsive theory to practice spans each of the four distinct topic modules in each tier. Each topic module in a tier then scaffolds to a more advanced topic module in the next tier. Tier 1, Bienvenidos, welcomes HSI STEM educators who recognize the need to better serve their Latinx students, and want guidance for small practical activities to try with their students. Tier 2, Transformation through Action, immerses HSI STEM educators in additional activities that bring culturally responsive practices into their technician training while building capacity to collect evidence about impacts and outcomes for students. Tier 3, Engaging Community, strengthens leadership as HSI STEM educators disseminate results from activities completed in Tiers 1 and 2 at conferences that attract technician educators. Sharing the evidence-based practices and their outcomes contributes to achieving broader impacts in the Advanced Technological Education or ATE Community of NSF grantees. Westchester Community College (WCC), the first 2-year HSI in the State University of New York (SUNY) 64 campus system, is piloting the 3-tier PD model using virtual learning methods mastered through previous NSF ATE work and the COVID-19 context. During the pilot, over 20 WCC technician educators in three cohorts will develop leadership skills and practice culturally responsive methods. The pilot will build capacity within WCC STEM technician programs to better support the diversity of students, industry demand for a diverse workforce, and WCC’s capacity for future development of technician education programs. This first paper in a three part series describes the program goals and objectives, the 3-Tier PD model, and reports initial results for Cohort A’s engagement in the first three modules of Tier 1.« less