skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: How to Support Career Technical Instructors to Develop Students' Professional Skills: Research Brief
Project GOALS (Greater Opportunities to Advance Lifelong Success), an NSF Advanced Technological Education targeted research project, brought together researchers and community college educators from 2020 through 2024 to co-develop, test, package, and distribute resources for developing technicians' professional skills. Through this work, the team discovered the barriers that hinder both instructors and students from connecting around professional skills development. To address these barriers, the Project GOALS team developed an instructional framework grounded in research that integrates focused low-stakes activities into classes as students work toward their technical certificates. Based on our research, we believe Project GOALS provides ways for students to students' career readiness. In this research brief, the team describes how the Project GOALS co-development collaboration revealed the supports that technical instructors need to build students' professional awareness and reflection habits. Through qualitative analysis, Project GOALS researchers discovered the challenges that prevent many instructors from sharing their honest assessments of students' professional skills. The brief describes findings and recommends ways that community colleges can provide the assistance and resources that instructors need to develop students' professional skills.  more » « less
Award ID(s):
2000881
PAR ID:
10529375
Author(s) / Creator(s):
; ; ; ;
Corporate Creator(s):
Editor(s):
NA
Publisher / Repository:
NA
Date Published:
Edition / Version:
1
Volume:
NA
Issue:
NA
Page Range / eLocation ID:
18
Subject(s) / Keyword(s):
professional skills employability skills community college career and technical education instructors students instruction
Format(s):
Medium: X Size: 2MB Other: pdf/a
Size(s):
2MB
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents findings from a qualitative study of eleven experienced STEM educators who worked alongside developers to design and implement data-rich lessons in their grades 6–9 mathematics and science classrooms. In the context of a project that seeks to develop professional learning for data fluency, researchers documented the co-development process to articulate a model of what teachers need to know and be able to do in order to support their students’ data fluency. The project team distilled key findings into two framing documents: 1) a description of high-leverage areas of focus for PL which highlight challenges faced by teachers, which are common, important for data fluency, and represent opportunities for supporting teacher and student growth; and 2) a logic model that describes how the PL course under development is expected to influence teacher, classroom, and student outcomes. This paper contributes to the larger education community by defining the professional learning needs of educators who wish to integrate data into their STEM classrooms. These frameworks provide designers and researchers with touchpoints to structure and study PL experiences, lesson materials, and other classroom resources for both new and veteran educators. These tools can provide STEM teachers with guidance for reflecting on their current knowledge, skills, beliefs, and teaching practices that help their students become more data fluent. 
    more » « less
  2. The purpose of our poster presentation is two-fold: 1) to provide an overview of our NSF project, Pandemic Impact: Undergraduates’ Social Capital and Engineering Professional Skills, and 2) to report our progress and preliminary quantitative findings. We hope to discuss our project and preliminary results with fellow engineering educators and receive feedback. The COVID-19 pandemic has impacted engineering education in multiple ways that will continue to be felt for years to come. One of the less understood ways the pandemic has continued to leave a residue on engineering education is how social distancing and online courses altered students’ professional development. Of particular concern are students who were either new to the institution or started their college education during the pandemic. These students have potentially limited opportunities to establish social relationships at their educational institutions compared to students who already developed such relationships when the pandemic-induced online learning took place. The differences in students’ social relationships can have other, more profound impacts on their undergraduate engineering experiences. Research has shown that students’ social relationships provide them with connections to resources and supports essential for navigating an engineering program and help them obtain more opportunities to practice non-technical professional skills [1], [2]. Although social distancing measures diminished and students returned primarily to in-person, the pandemic has altered the development of engineering students in ways not understood. In particular, understanding the nature of students’ social interactions on campus and the types of opportunities for professional development is essential so that instructors and campus staff can respond to the developmental needs of students. As a result, the overarching research question for our project is: How do engineering undergraduates leverage relationships (operationalized as social capital) to gain opportunities to develop professional skills? 
    more » « less
  3. The goal of this program, funded by the National Science Foundation Advanced Technological Education (NSF ATE) program, is to provide additional professional and technical skills to cohorts of high school students through a Saturday Program. The program has provided inner-city high school students with out-of-school, hands-on educational experiences focusing on both professional and technical skills. Participant demographics will be discussed in this paper as diversity is a key objective of the program. The program utilizes industry-driven, project-based learning (PBL) and lessons in career and college readiness to prepare students for the workforce. Each student session consists of five consecutive Saturdays and is taught by a team of high school teachers, community college faculty, and instructors with expertise in professional skills, teambuilding, leadership, technical writing, coding, and STEM disciplines. The program is held on community college campuses as a way to show students that they are welcome in a college environment, which has inspired participants to have confidence in their own abilities to attend college and pursue educational and career goals in technology fields. Principals from participating high schools have commented that students who attended the Program have demonstrated an improvement in their academics and behavior due to the knowledge of professional and technical skills that they have gleaned from the program. The program’s leadership team disseminates best practices through presentations, social media, publications, and workshops at national conferences. The virtual four-day Summer Teachers’ Workshop allows high school and community college educators from throughout the United States to experience the same program that is used for the high school students. Although the workshop is virtual, participants are provided with materials and supplies, so they have the same hands-on experiences as the students in the Saturday program. 
    more » « less
  4. Commitment is a multi-dimensional construct that has been extensively researched in the context of organizations. Organizational and professional commitment have been positively associated with technical performance, client service, attention to detail, and degree of involvement with one’s job. However, there is a relative dearth of research in terms of team commitment, especially in educational settings. Teamwork is considered a 21stcentury skill and higher education institutions are focusing on helping students to develop teamwork skills by applied projects in the coursework. But studies have demonstrated that creating a team is not enough to help students build teamwork skills. Literature supports the use of team contracts to bolster commitment, among team members. However, the relationship between team contracts and team commitment has not been formally operationalized.This research category study presents a mixed-methods approach towards characterizing and operationalizing team commitment exhibited by students enrolled in a sophomore-level systems analysis and design course by analyzing team contracts and team retrospective reflections. The course covers concepts pertaining to information systems development and includes a semester-long team project where the students work together in four or five member teams to develop the project deliverables. The students have prior software development experiences through an introductory systems development course as well as multiple programming courses. The data for this study was collected through the team contracts signed by students belonging to one of the 23 teams of this course. The study aims to answer the following research question: How can team commitment be characterized in a sophomore-level system analysis and design course among the student teams?A rubric was developed to quantify the team commitment levels of students based on their responses on the team contracts. Students were classified as high or low commitment based on the rubric scores. The emergent themes of high and low commitment teams were also presented. The results indicated that the high commitment teams were focused on setting goals, effective communication, and having mechanisms in place for timely feedback and improvement. On the other hand, low commitment teams did not articulate the goals of the project, they demonstrated a lack of dedication for attending team meetings regularly, working as a team, and had a lack of proper coordination while working together. 
    more » « less
  5. Electrical and computer engineering technologies have evolved into dynamic, complex systems that profoundly change the world we live in. Designing these systems requires not only technical knowledge and skills but also new ways of thinking and the development of social, professional and ethical responsibility. A large electrical and computer engineering department at a Midwestern public university is transforming to a more agile, less traditional organization to better respond to student, industry and society needs. This is being done through new structures for faculty collaboration and facilitated through departmental change processes. Ironically, an impetus behind this effort was a failed attempt at department-wide curricular reform. This failure led to the recognition of the need for more systemic change, and a project emerged from over two years of efforts. The project uses a cross-functional, collaborative instructional model for course design and professional formation, called X-teams. X-teams are reshaping the core technical ECE curricula in the sophomore and junior years through pedagogical approaches that (a) promote design thinking, systems thinking, professional skills such as leadership, and inclusion; (b) contextualize course concepts; and (c) stimulate creative, socio-technical-minded development of ECE technologies. An X-team is comprised of ECE faculty members including the primary instructor, an engineering education and/or design faculty member, an industry practitioner, context experts, instructional specialists (as needed to support the process of teaching, including effective inquiry and inclusive teaching) and student teaching assistants. X-teams use an iterative design thinking process and reflection to explore pedagogical strategies. X-teams are also serving as change agents for the rest of the department through communities of practice referred to as Y-circles. Y-circles, comprised of X-team members, faculty, staff, and students, engage in a process of discovery and inquiry to bridge the engineering education research-to-practice gap. Research studies are being conducted to answer questions to understand (1) how educators involved in X-teams use design thinking to create new pedagogical solutions; (2) how the middle years affect student professional ECE identity development as design thinkers; (3) how ECE students overcome barriers, make choices, and persist along their educational and career paths; and (4) the effects of department structures, policies, and procedures on faculty attitudes, motivation and actions. This paper will present the efforts that led up to the project, including failures and opportunities. It will summarize the project, describe related work, and present early progress implementing new approaches. 
    more » « less