skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 4-40 GHz Permittivity Measurements of Indoor Building Materials
The transmission properties of common building materials, such as glass and red brick, are measured at normal incidence over a range of 4-40 GHz in a modular anechoic chamber using a vector network analyzer. Complex permittivity values are estimated using only transmission S-parameters of the material under test and an air reference measurement. Results suggest that the method provides reasonable estimates of complex permittivity at high microwave and lower mm-wave frequencies.  more » « less
Award ID(s):
1725970
PAR ID:
10112168
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2019 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Zirconia Ribbon Ceramic (ZRC) is a commercially available ceramic that can be a potential low-loss substrate for radio frequency (RF) devices suitable for high temperatures and harsh environmental conditions. In this paper, the RF characteristics of ZRC are determined in the frequency band of 0.5 GHz to 5 GHz. A T-resonator is designed and fabricated for the transmission coefficient measurements to obtain complex permittivity (dielectric constant and loss tangent) values of the material. The dielectric constant is shown to be steady at 32.2, while the loss tangent is found to be at 0.001 in the band of interest. 
    more » « less
  2. We report the real-valued static and complex-valued quasi-static anisotropic permittivity parameters of rare-earth scandate orthorhombic single crystal GdScO3 (GSO), TbScO3 (TSO), and DyScO3 (DSO). Employing continuous-wave terahertz spectroscopy (0.2–1 THz), the complex permittivity was extracted using an anisotropic ambient-film-ambient model. Data obtained from multiple samples of the same oxides and different surface cuts were analyzed simultaneously. The zero-frequency limit of the modeled data indicates that at room temperature the real part of the dielectric tensor components for GSO are ɛa = 22.7, ɛb = 19.3, and ɛc = 28.1; for DSO, ɛa = 20.3, ɛb = 17.4, and ɛc = 31.1; and for TSO, ɛa = 21.6, ɛb = 18.1, and ɛc = 30.3, with a, b, and c crystallographic axes constituting the principal directions for the permittivity tensor. These results are in excellent agreement with expectations from theoretical computations and with scarcely available data from previous experimental studies. Furthermore, our results evidence a noticeable attenuation, which increases with frequency, and are very significant especially at the higher frequency end of the measurement and along the c-direction in all samples. We suggest the attenuation is most likely caused by the onset of absorption due to long-wavelength active optical phonon modes. These results are important for electronic and potential sub-terahertz applications (e.g., quarter-wave plate) benefiting from the large index contrast along different directions in these materials. 
    more » « less
  3. Metamaterials are artificially engineered structures that have unique properties not usually found in natural materials, such as negative refractive index. Conventional interferometry or ellipsometry is generally used for characterizing the optical properties of metamaterials. Here, we report an alternative optical vortex based interferometric approach for the characterization of the effective parameters of optical metamaterials by directly measuring the transmission and reflection phase shifts from metamaterials according to the rotation of vortex spiral interference pattern. The fishnet metamaterials possessing positive, zero and negative refractive indices are characterized with the vortex based interferometry to precisely determine the complex values of effective permittivity, permeability, and refractive index. Our results will pave the way for the advancement of new spectroscopic and interferometric techniques to characterize optical metamaterials, metasurfaces, and nanostructured thin films in general. 
    more » « less
  4. Hexagonal semiconductors such as GaN and SiC have important power applications at radio and millimeter-wave (mmW) frequencies. They are characterized by both ordinary and extraordinary permittivities, parallel and perpendicular to the densest packed c plane, respectively. However, due to the challenges of high-frequency measurements, little reliable data exist for these permittivities especially at mmW frequencies. Recently, for the first time, we reported the extraordinary permittivity of 4H SiC at mmW frequencies using substrateintegrated waveguides. We now report the ordinary permittivity of the same material using several Fabry-Perot resonators to cover most mmW frequencies. The resulted relative ordinary permittivity of 9.76 ± 0.01 exhibits little dispersion and is significantly lower than the previously reported extraordinary permittivity of 10.2 ± 0.1. This confirms that both ordinary and extraordinary permittivities are needed for accurate design and model of devices fabricated on 4H SiC. By contrast, the measured loss tangent increases linearly from 3  10−5 to 1.6  10−4 from 55 GHz to 330 GHz and can be fitted with (4.9 ± 0.1)  10−16 f, where f is the frequency in Hz. In fact, 4H SiC is the lowest-loss solid we have ever measured. The present approaches for permittivity characterization can be extended to other solids. 
    more » « less
  5. Polymer nanodielectrics present a particularly challenging materials design problem for capacitive energy storage applications like polymer film capacitors. High permittivity and breakdown strength are needed to achieve high energy density and loss must be low. Strategies that increase permittivity tend to decrease the breakdown strength and increase loss. We hypothesize that a parameter space exists for fillers of modest aspect ratio functionalized with charge-trapping molecules that results in an increase in permittivity and breakdown strength simultaneously, while limiting increases in loss. In this work, we explore this parameter space, using physics-based, multiscale 3D dielectric property simulations, mixed-variable machine learning and Bayesian optimization to identify the compositions and morphologies which lead to the optimization of these competing properties. We employ first principle-based calculations for interface trap densities which are further used in breakdown strength calculations. For permittivity and loss calculations, we use continuum scale modelling and finite difference solution of Poisson’s equation for steady-state currents. We propose a design framework for optimizing multiple properties by tuning design variables including the microstructure and interface properties. Finally, we employ mixed-variable global sensitivity analysis to understand the complex interplay between four continuous microstructural and two categorical interface choices to extract further physical knowledge on the design of nanodielectrics. 
    more » « less