skip to main content


Title: Effect of Nonuniform Flexibility on Hydrodynamic Performance of Pitching Propulsors
Many aquatic animals propel themselves efficiently through the water by oscillating flexible fins. These fins are, however, not homogeneously flexible, but instead their flexural stiffness varies along their chord and span. Here, we develop a simple model of these functionally graded materials where the chordwise flexibility of the foil is modeled by one or two torsional springs along the chord line. The torsional spring structural model is then strongly coupled to a boundary element fluid model to simulate the fluid–structure interactions. We show that the effective flexibility of the combined fluid–structure system scales with the ratio of the added mass forces acting on the passive portion of the foil and the elastic forces defined by the torsional spring hinge. Importantly, by considering this new scaling of the effective flexibility, the propulsive performance is then detailed for a foil with a flexible hinge that is actively pitching about its leading edge. The scaling allows for the resonance frequency of the fluid–structure system and the bending pattern of the propulsor to be independently varied by altering the effective flexibility and the location of a single torsional spring along the chord, respectively. It is shown that increasing the flexion ratio, by moving the spring away from the leading edge, leads to enhanced propulsive efficiency, but compromises the thrust production. Proper combination of two flexible hinges, however, can result in a gain in both the thrust production and propulsive efficiency.  more » « less
Award ID(s):
1653181
NSF-PAR ID:
10112217
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Fluids Engineering
Volume:
141
Issue:
4
ISSN:
0098-2202
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The shape of a foil undergoing a combined pitching heaving motion is critical to its design in applications that demand high efficiency and thrust. This study focuses on understanding of how the shape of a foil affects its propulsive performance. We perform two-dimensional numerical simulations of fluid flows around a flapping foil for different governing parameters in the range of biological swimmers and bio-inspired underwater vehicles. By varying the foil shape using a class-shape transformation method, we investigate a broad range of foil-like shapes. In the study, we also show consistent results with previous studies that a thicker leading-edge and sharper trailing-edge makes for a more efficient foil shape undergoing a flapping motion. In addition, we explain that the performance of the foil is highly sensitive to its shape, specifically the thickness of the foil between the 18th and 50th percent along the chord of the foil. Moreover, we elucidate the flow mechanisms behind variations in performance metrics, particularly focused on constructive interference between the vortices generated at the leading-edge with the trailing-edge vortex, as well as the pressure field differences that lead to higher power consumption in less efficient foil shapes. 
    more » « less
  2. Numerical studies are presented on the propulsive performance and vortex dynamics of multiple hydrofoils pitching in an in-line configuration. The study is motivated by the quest to understand the hydrodynamics of multiple fin–fin interactions in fish swimming. Using the flow conditions (Strouhal and Reynolds numbers) obtained from a solitary pitching foil of zero net thrust, the effect of phase differences between neighboring foils on the hydrodynamic performance is examined both in position-fixed two- and three-foil systems at Reynolds number Re = 500. It is found that the threefoil system achieves a thrust enhancement up to 118% and an efficiency enhancement up to 115% compared to the two-foil system. Correspondingly, the leading-edge vortex (LEV) and the trailing-edge vortex (TEV) of the hindmost foil combine to form a ‘2P’ wake structure behind the three-foil system with the optimal phase differences instead of a ‘2S’ wake, a coherent wake pattern observed behind the optimal two-foil system. The finding suggests that a position-fixed three-foil system can generate a ‘2P’ wake to achieve the maximum thrust production and propulsive efficiency simultaneously by deliberately choosing the undulatory phase for each foil. When increasing Reynolds number to 1000, though the maximum thrust and propulsive efficiency are not achieved simultaneously, the most efficient case still produces more thrust than most of the other cases. Besides, the study on the effects of three-dimensionality shows that when the foils have a larger aspect ratio, the three-foil system has a better hydrodynamic performance, and it follows a similar trend as the two-dimensional (2D) foil system. This work aids in the future design of high-performance underwater vehicles with multiple controlled propulsion elements. 
    more » « less
  3. In this work, direct numerical simulation (DNS) is used to investigate how airfoil shape affects wake structure and performance during a pitching-heaving motion. First, a classshape transformation (CST) method is used to generate airfoil shapes. CST coefficients are then varied in a parametric study to create geometries that are simulated in a pitching and heaving motion via an immersed boundary method-based numerical solver. The results show that most coefficients have little effect on the propulsive efficiency, but the second coefficient does have a very large effect. Looking at the CST basis functions shows that the effect of this coefficient is concentrated near the 25% mark of the foils chord length. By observing the thrust force and hydrodynamic power through a period of motion it is shown that the effect of the foil shape change is realized near the middle of each flapping motion. Through further inspection of the wake structures, we conclude that this is due to the leading-edge vortex attaching better to the foil shapes with a larger thickness around 25% of the chord length. This is verified by the pressure contours, which show a lower pressure along the leading edge of the better performing foils. The more favorable pressure gradient generated allows for higher efficiency motion. 
    more » « less
  4. Three-dimensional numerical simulations are carried out to study the hydrodynamic performance and flow features of a bio-inspired underwater propulsor. The propulsor is constituted by a passive pitching panel. The leading edge of the panel is prescribed under a periodic heaving motion while the panel pitches passively due to the employing of a stiffness-lumped torsional spring at the leading edge. Effects of the torsional spring stiffness have been put emphases on. A real-time tunable stiffness strategy is presented and employed in the study. We first study the passive pitching effects on the hydrodynamics and flow features of the panel using a series of constant stiffness and then we study the tunable stiffness effects using cosinusoidal curve based waveforms, in which the effects of phase difference (ϕ) between the stiffness profile and the oscillation motion and as well as the effects of stiffness fluctuation amplitude (Gk) are investigated, respectively. The stiffness profile beneficial for propulsion efficiency is further applied to cases with different oscillation amplitudes. A high-fidelity immersed boundary method based direct numerical simulation (DNS) solver is employed to acquire the fluid dynamics and to simulate the flow. The panel passive pitching motion is solved by coupling the DNS flow solver and the Euler rigid body dynamic equation. Results show that for the constant stiffness cases, the panel generates sinusoidal-like pitching motion, and in certain stiffness range, flexibility could benefit efficiency while holding some extent of stiffness could enhance the thrust. For the tunable stiffness cases, it is found that both the mean thrust and propulsive efficiency improved when the stiffness change is in-phase with the heaving motion (ϕ = 0). The largest mean thrust is found at ϕ = 120 degree. 
    more » « less
  5. Flapping, flexible insect wings deform under inertial and fluid loading. Deformation influences aerodynamic force generation and sensorimotor control, and is thus important to insect flight mechanics. Conventional flapping wing fluid–structure interaction models provide detailed information about wing deformation and the surrounding flow structure, but are impractical in parameter studies due to their considerable computational demands. Here, we develop two quasi three-dimensional reduced-order models (ROMs) capable of describing the propulsive forces/moments and deformation profiles of flexible wings. The first is based on deformable blade element theory (DBET) and the second is based on the unsteady vortex lattice method (UVLM). Both rely on a modal-truncation based structural solver. We apply each model to estimate the aeromechanics of a thin, flapping flat plate with a rigid leading edge, and compare ROM findings to those produced by a coupled fluid dynamics/finite element computational solver. The ROMs predict wing deformation with good accuracy even for relatively large deformations of 25% of the chord length. Aerodynamic loading normal to the wing's rotation plane is well captured by the ROMs, though model errors are larger for in-plane loading. We then perform a parameter sweep to understand how wing flexibility and mass affect peak deflection, mean lift and average power. All models indicate that flexible wings produce less lift but require lower average power to flap. Importantly, these studies highlight the computational efficiency of the ROMs—compared to the convention modeling approach, the UVLM and DBET ROMs solve 4 and 6 orders of magnitude faster, respectively.

     
    more » « less