skip to main content


Title: Propulsive performance and vortex wakes of multiple tandem foils pitching in-line
Numerical studies are presented on the propulsive performance and vortex dynamics of multiple hydrofoils pitching in an in-line configuration. The study is motivated by the quest to understand the hydrodynamics of multiple fin–fin interactions in fish swimming. Using the flow conditions (Strouhal and Reynolds numbers) obtained from a solitary pitching foil of zero net thrust, the effect of phase differences between neighboring foils on the hydrodynamic performance is examined both in position-fixed two- and three-foil systems at Reynolds number Re = 500. It is found that the threefoil system achieves a thrust enhancement up to 118% and an efficiency enhancement up to 115% compared to the two-foil system. Correspondingly, the leading-edge vortex (LEV) and the trailing-edge vortex (TEV) of the hindmost foil combine to form a ‘2P’ wake structure behind the three-foil system with the optimal phase differences instead of a ‘2S’ wake, a coherent wake pattern observed behind the optimal two-foil system. The finding suggests that a position-fixed three-foil system can generate a ‘2P’ wake to achieve the maximum thrust production and propulsive efficiency simultaneously by deliberately choosing the undulatory phase for each foil. When increasing Reynolds number to 1000, though the maximum thrust and propulsive efficiency are not achieved simultaneously, the most efficient case still produces more thrust than most of the other cases. Besides, the study on the effects of three-dimensionality shows that when the foils have a larger aspect ratio, the three-foil system has a better hydrodynamic performance, and it follows a similar trend as the two-dimensional (2D) foil system. This work aids in the future design of high-performance underwater vehicles with multiple controlled propulsion elements.  more » « less
Award ID(s):
1931929
NSF-PAR ID:
10473206
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ELSEVIER
Date Published:
Journal Name:
Journal of Fluids and Structures
Volume:
108
Issue:
C
ISSN:
0889-9746
Page Range / eLocation ID:
103422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, direct numerical simulation (DNS) is used to investigate how airfoil shape affects wake structure and performance during a pitching-heaving motion. First, a classshape transformation (CST) method is used to generate airfoil shapes. CST coefficients are then varied in a parametric study to create geometries that are simulated in a pitching and heaving motion via an immersed boundary method-based numerical solver. The results show that most coefficients have little effect on the propulsive efficiency, but the second coefficient does have a very large effect. Looking at the CST basis functions shows that the effect of this coefficient is concentrated near the 25% mark of the foils chord length. By observing the thrust force and hydrodynamic power through a period of motion it is shown that the effect of the foil shape change is realized near the middle of each flapping motion. Through further inspection of the wake structures, we conclude that this is due to the leading-edge vortex attaching better to the foil shapes with a larger thickness around 25% of the chord length. This is verified by the pressure contours, which show a lower pressure along the leading edge of the better performing foils. The more favorable pressure gradient generated allows for higher efficiency motion. 
    more » « less
  2. In this study, we numerically investigate the effects of the tail-beat phase differences between the trailing fish and its neighboring fish on the hydrodynamic performance and wake dynamics in a two-dimensional high-density school. Foils undulating with a wavy-like motion are employed to mimic swimming fish. The phase difference varies from 0° to 360°. A sharp-interface immersed boundary method is used to simulate flows over the fish-like bodies and provide quantitative analysis of the hydrodynamic performance and wakes of the school. It is found that the highest net thrust and swimming efficiency can be reached at the same time in the fish school with a phase difference of 180°. In particular, when the phase difference is 90°, the trailing fish achieves the highest efficiency, 58% enhancement compared with a single fish, while it has the highest thrust production, increased by 108% over a single fish, at a phase difference of 0°. The performance and flow visualization results suggest that the phase of the trailing fish in the dense school can be controlled to improve thrust and propulsive efficiency, and these improvements occur through the hydrodynamic interactions with the vortices shed by the neighboring fish and the channel formed by the side fish. In addition, the investigation of the phase difference effects on the wake dynamics of schools performed in this work represents the first study in which the wake patterns for systems consisting of multiple undulating bodies are categorized. In particular, a reversed Bénard–von Kármán vortex wake is generated by the trailing fish in the school with a phase difference of 90°, while a Bénard–von Kármán vortex wake is produced when the phase difference is 0°. Results have revealed that the wake patterns are critical to predicting the hydrodynamic performance of a fish school and are highly dependent on the phase difference.

     
    more » « less
  3. We present experiments on oscillating hydrofoils undergoing combined heaving and pitching motions, paying particular attention to connections between propulsive efficiency and coherent wake features extracted using modal analysis. Time-averaged forces and particle image velocimetry measurements of the flow field downstream of the foil are presented for a Reynolds number of Re=11000 and Strouhal numbers in the range St=0.16--0.35. These conditions produce 2S and 2P wake patterns, as well as a near-momentumless wake structure. A triple decomposition using the optimized dynamic mode decomposition method is employed to identify dominant modal components (or coherent structures) in the wake. These structures can be connected to wake instabilities predicted using spatial stability analyses. Examining the modal components of the wake provides insightful explanations into the transition from drag to thrust production, and conditions that lead to peak propulsive efficiency. In particular, we find modes that correspond to the primary vortex development in the wakes. Other modal components capture elements of bluff body shedding at Strouhal numbers below the optimum for peak propulsive efficiency and characteristics of separation for Strouhal numbers higher than the optimum. 
    more » « less
  4. null (Ed.)
    Scaling laws for the thrust production and power consumption of a purely pitching hydrofoil in ground effect are presented. For the first time, ground-effect scaling laws based on physical insights capture the propulsive performance over a wide range of biologically relevant Strouhal numbers, dimensionless amplitudes and dimensionless ground distances. This is achieved by advancing previous scaling laws (Moored & Quinn ( AIAA J. , 2018, pp. 1–15)) with physics-driven modifications to the added mass and circulatory forces to account for ground distance variations. The key physics introduced are the increase in the added mass of a foil near the ground and the reduction in the influence of a wake-vortex system due to the influence of its image system. The scaling laws are found to be in good agreement with new inviscid simulations and viscous experiments, and can be used to accelerate the design of bio-inspired hydrofoils that oscillate near a ground plane or two out-of-phase foils in a side-by-side arrangement. 
    more » « less
  5. Gorb, S. (Ed.)
    Through computational fluid dynamics (CFD) simulations of a model manta ray body, the hydrodynamic role of manta-like bioinspired flapping is investigated. The manta ray model motion is reconstructed from synchronized high-resolution videos of manta ray swimming. Rotation angles of the model skeletal joints are altered to scale the pitching and bending, resulting in eight models with different pectoral fin pitching and bending ratios. Simulations are performed using an in-house developed immersed boundary method-based numerical solver. Pectoral fin pitching ratio (PR) is found to have significant implications in the thrust and efficiency of the manta model. This occurs due to more optimal vortex formation and shedding caused by the lower pitching ratio. Leading edge vortexes (LEVs) formed on the bottom of the fin, a characteristic of the higher PR cases, produced parasitic low pressure that hinders thrust force. Lowering the PR reduces the influence of this vortex while another LEV that forms on the top surface of the fin strengthens it. A moderately high bending ratio (BR) can slightly reduce power consumption. Finally, by combining a moderately high BR = 0.83 with PR = 0.67, further performance improvements can be made. This enhanced understanding of manta-inspired propulsive mechanics fills a gap in our understanding of the manta-like mobuliform locomotion. This motivates a new generation of manta-inspired robots that can mimic the high speed and efficiency of their biological counterpart.

     
    more » « less