skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Smoother Way to Train Structured Prediction Models
We present a framework to train a structured prediction model by performing smoothing on the inference algorithm it builds upon. Smoothing overcomes the non-smoothness inherent to the maximum margin structured prediction objective, and paves the way for the use of fast primal gradient-based optimization algorithms. We illustrate the proposed framework by developing a novel primal incremental optimization algorithm for the structural support vector machine. The proposed algorithm blends an extrapolation scheme for acceleration and an adaptive smoothing scheme and builds upon the stochastic variance-reduced gradient algorithm. We establish its worst-case global complexity bound and study several practical variants. We present experimental results on two real-world problems, namely named entity recognition and visual object localization. The experimental results show that the proposed framework allows us to build upon efficient inference algorithms to develop large-scale optimization algorithms for structured prediction which can achieve competitive performance on the two real-world problems.  more » « less
Award ID(s):
1740551
PAR ID:
10112286
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Advances in Neural Information Processing Systems 31
Page Range / eLocation ID:
4766--4778
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We introduce a framework for designing primal methods under the decentralized optimization setting where local functions are smooth and strongly convex. Our approach consists of approximately solving a sequence of sub-problems induced by the accelerated augmented Lagrangian method, thereby providing a systematic way for deriving several well-known decentralized algorithms including EXTRA [41] and SSDA [37]. When coupled with accelerated gradient descent, our framework yields a novel primal algorithm whose convergence rate is optimal and matched by recently derived lower bounds. We provide experimental results that demonstrate the effectiveness of the proposed algorithm on highly ill-conditioned problems. 
    more » « less
  2. null (Ed.)
    We introduce a framework for designing primal methods under the decentralized optimization setting where local functions are smooth and strongly convex. Our approach consists of approximately solving a sequence of sub-problems induced by the accelerated augmented Lagrangian method, thereby providing a systematic way for deriving several well-known decentralized algorithms including EXTRA and SSDA. When coupled with accelerated gradient descent, our framework yields a novel primal algorithm whose convergence rate is optimal and matched by recently derived lower bounds. We provide experimental results that demonstrate the effectiveness of the proposed algorithm on highly ill-conditioned problems. 
    more » « less
  3. We propose an inexact variable-metric proximal point algorithm to accelerate gradient-based optimization algorithms. The proposed scheme, called QNing can be notably applied to incremental first-order methods such as the stochastic variance-reduced gradient descent algorithm (SVRG) and other randomized incremental optimization algorithms. QNing is also compatible with composite objectives, meaning that it has the ability to provide exactly sparse solutions when the objective involves a sparsity-inducing regularization. When combined with limited-memory BFGS rules, QNing is particularly effective to solve high-dimensional optimization problems, while enjoying a worst-case linear convergence rate for strongly convex problems. We present experimental results where QNing gives significant improvements over competing methods for training machine learning methods on large samples and in high dimensions. 
    more » « less
  4. We consider stochastic zeroth-order optimization over Riemannian submanifolds embedded in Euclidean space, where the task is to solve Riemannian optimization problems with only noisy objective function evaluations. Toward this, our main contribution is to propose estimators of the Riemannian gradient and Hessian from noisy objective function evaluations, based on a Riemannian version of the Gaussian smoothing technique. The proposed estimators overcome the difficulty of nonlinearity of the manifold constraint and issues that arise in using Euclidean Gaussian smoothing techniques when the function is defined only over the manifold. We use the proposed estimators to solve Riemannian optimization problems in the following settings for the objective function: (i) stochastic and gradient-Lipschitz (in both nonconvex and geodesic convex settings), (ii) sum of gradient-Lipschitz and nonsmooth functions, and (iii) Hessian-Lipschitz. For these settings, we analyze the oracle complexity of our algorithms to obtain appropriately defined notions of ϵ-stationary point or ϵ-approximate local minimizer. Notably, our complexities are independent of the dimension of the ambient Euclidean space and depend only on the intrinsic dimension of the manifold under consideration. We demonstrate the applicability of our algorithms by simulation results and real-world applications on black-box stiffness control for robotics and black-box attacks to neural networks. 
    more » « less
  5. We introduce a generic scheme for accelerating gradient-based optimization methods in the sense of Nesterov. The approach, called Catalyst, builds upon the inexact accelerated proximal point algorithm for minimizing a convex objective function, and consists of approximately solving a sequence of well-chosen auxiliary problems, leading to faster convergence. One of the keys to achieve acceleration in theory and in practice is to solve these sub-problems with appropriate accuracy by using the right stopping criterion and the right warm-start strategy. We give practical guidelines to use Catalyst and present a comprehensive analysis of its global complexity. We show that Catalyst applies to a large class of algorithms, including gradient descent, block coordinate descent, incremental algorithms such as SAG, SAGA, SDCA, SVRG, MISO/Finito, and their proximal variants. For all of these methods, we establish faster rates using the Catalyst acceleration, for strongly convex and non-strongly convex objectives. We conclude with extensive experiments showing that acceleration is useful in practice, especially for ill-conditioned problems. 
    more » « less